Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie L. Cápiro is active.

Publication


Featured researches published by Natalie L. Cápiro.


Journal of Biological Chemistry | 2012

Activation of Transcription Factor MEF2D by Bis(3)-cognitin Protects Dopaminergic Neurons and Ameliorates Parkinsonian Motor Defects

Lu Yao; Wenming Li; Hua She; Juan Dou; Leili Jia; Yingli He; Qian Yang; Jinqiu Zhu; Natalie L. Cápiro; Douglas I. Walker; Kurt D. Pennell; Yuan Ping Pang; Yong Liu; Yifan Han; Zixu Mao

Background: Dysregulation of myocyte enhancer factor 2D (MEF2D) is implicated in the pathogenic process of Parkinson disease (PD). Results: A small molecule bis(3)-cognitin activates MEF2D and protects Parkinsonian impairments. Conclusion: Bis(3)-cognitin provides protection of dopaminergic neurons in a model of PD by reversing MEF2D dysfunction. Significance: Activation of MEF2D by pharmacological approach has the potential to be a novel therapeutic for PD. Parkinson disease (PD) is characterized by the selective demise of dopaminergic (DA) neurons in the substantial nigra pars compacta. Dysregulation of transcriptional factor myocyte enhancer factor 2D (MEF2D) has been implicated in the pathogenic process in in vivo and in vitro models of PD. Here, we identified a small molecule bis(3)-cognitin (B3C) as a potent activator of MEF2D. We showed that B3C attenuated the toxic effects of neurotoxin 1-methyl-4-phenylpyridinium (MPP+) by activating MEF2D via multiple mechanisms. B3C significantly reduced MPP+-induced oxidative stress and potentiated Akt to down-regulate the activity of MEF2 inhibitor glycogen synthase kinase 3β (GSK3β) in a DA neuronal cell line SN4741. Furthermore, B3C effectively rescued MEF2D from MPP+-induced decline in both nucleic and mitochondrial compartments. B3C offered SN4741 cells potent protection against MPP+-induced apoptosis via MEF2D. Interestingly, B3C also protected SN4741 cells from wild type or mutant A53T α-synuclein-induced cytotoxicity. Using the in vivo PD model of C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), we showed that B3C maintained redox homeostasis, promoted Akt function activity, and restored MEF2D level in midbrain neurons. Moreover, B3C greatly prevented the loss of tyrosine hydroxylase signal in substantial nigra pars compacta DA neurons and ameliorated behavioral impairments in mice treated with MPTP. Collectedly, our studies identified B3C as a potent neuroprotective agent whose effectiveness relies on its ability to effectively up-regulate MEF2D in DA neurons against toxic stress in models of PD in vitro and in vivo.


Environmental Science & Technology | 2014

Distribution of organohalide-respiring bacteria between solid and aqueous phases.

Natalie L. Cápiro; Yonggang Wang; Janet K. Hatt; Carmen Lebron; Kurt D. Pennell; Frank E. Löffler

Contemporary microbial monitoring of aquifers relies on groundwater samples to enumerate nonattached cells of interest. One-dimensional column studies quantified the distribution of bacterial cells in solid and the aqueous phases as a function of microbial species, growth substrate availability and porous medium (i.e., Appling soil versus Federal Fine Ottawa sand with 0.75% and 0.01% [w/w] organic carbon, respectively). Without supplied growth substrates, effluent from columns inoculated with the tetrachloroethene- (PCE-) to-ethene-dechlorinating bacterial consortium BDI-SZ containing Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ), or inoculated with Anaeromyxobacter dehalogenans strain W (AdehalW), captured 94-96, 81-99, and 73-84% of the Dhc, GeoSZ, and AdehalW cells, respectively. Cell retention was organism-specific and increased in the order Dhc < GeoSZ < AdehalW. When amended with 10 mM lactate and 0.11 mM PCE, aqueous samples accounted for 1.3-27 and 0.02-22% of the total Dhc and GeoSZ biomass, respectively. In Appling soil, up to three orders-of-magnitude more cells were associated with the solid phase, and attachment rate coefficients (katt) were consistently greater compared to Federal Fine sand. Cell-solid interaction energies ranged from -2.5 to 787 kT and were consistent with organism-specific deposition behavior, where GeoSZ and AdehalW exhibited greater attachment than Dhc cells. The observed disparities in microbial cell distributions between the aqueous and solid phases imply that groundwater analysis can underestimate the total cell abundance in the aquifer by orders-of-magnitude under conditions of growth and in porous media with elevated organic carbon content. The implications of these findings for monitoring chlorinated solvent sites are discussed.


PLOS ONE | 2012

25-Hydroxyvitamin D depletion does not exacerbate MPTP-induced dopamine neuron damage in mice.

E. Danielle Dean; Lydia M. Mexas; Natalie L. Cápiro; Jeanne E. McKeon; Mahlon R. DeLong; Kurt D. Pennell; Jonathan A. Doorn; Vin Tangpricha; Gary W. Miller; Marian L. Evatt

Recent clinical evidence supports a link between 25-hydroxyvitamin D insufficiency (serum 25-hydroxyvitamin D [25(OH)D] levels <30 ng/mL) and Parkinson’s disease. To investigate the effect of 25(OH)D depletion on neuronal susceptibility to toxic insult, we induced a state of 25(OH)D deficiency in mice and then challenged them with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found there was no significant difference between control and 25(OH)D-deficient animals in striatal dopamine levels or dopamine transporter and tyrosine hydroxylase expression after lesioning with MPTP. Additionally, we found no difference in tyrosine hydroxylase expression in the substantia nigra pars compacta. Our data suggest that reducing 25(OH)D serum levels in mice has no effect on the vulnerability of nigral dopaminergic neurons in vivo in this model system of parkinsonism.


Environmental Science & Technology | 2011

Liquid−Liquid Mass Transfer of Partitioning Electron Donors in Chlorinated Solvent Source Zones

Natalie L. Cápiro; Emmie K. Granbery; Carmen Lebron; David W. Major; Michaye L. McMaster; Michael J. Pound; Frank E. Löffler; Kurt D. Pennell

A combination of batch and column experiments evaluated the mass transfer of two candidate partitioning electron donors (PEDs), n-hexanol (nHex) and n-butyl acetate (nBA), for enhanced bioremediation of trichloroethene (TCE)-dense nonaqueous phase liquid (DNAPL). Completely mixed batch reactor experiments yielded equilibrium TCE-DNAPL and water partition coefficients (KNW) for nHex and nBA of 21.7 ± 0.27 and 330.43 ± 6.7, respectively, over a range of initial PED concentrations up to the aqueous solubility limit of ca. 5000 mg/L. First-order liquid-liquid mass transfer rates determined in batch reactors with nBA or nHex concentrations near the aqueous solubility were 0.22 min(-1) and 0.11 min(-1), respectively. Liquid-liquid mass transfer under dynamic flow conditions was assessed in one-dimensional (1-D) abiotic columns packed with Federal Fine Ottawa sand containing a uniform distribution of residual TCE-DNAPL. Following pulse injection of PED solutions at pore-water velocities (vp) ranging from 1.2 to 6.0 m/day, effluent concentration measurements demonstrated that both nHex and nBA partitioned strongly into residual TCE-DNAPL with maximum effluent levels not exceeding 35% and 7%, respectively, of the applied concentrations of 4000 to 5000 mg/L. PEDs persisted at effluent concentrations above 5 mg/L for up to 16 and 80 pore volumes for nHex and nBA, respectively. Mathematical simulations yielded KNW values ranging from 44.7 to 48.2 and 247 to 291 and liquid-liquid mass transfer rates of 0.01 to 0.03 min(-1) and 0.001 to 0.006 min(-1) for nHex and nBA, respectively. The observed TCE-DNAPL and water mass transfer behavior suggests that a single PED injection can persist in a treated source zone for prolonged time periods, thereby reducing the need for, or frequency of, repeated electron donor injections to support bacteria that derive reducing equivalents for TCE reductive dechlorination from PED fermentation.


Journal of Contaminant Hydrology | 2015

Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

Natalie L. Cápiro; Frank E. Löffler; Kurt D. Pennell

Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate dynamic responses of organohalide-respiring bacteria in a heterogeneous DNAPL source zone, and emphasize the influence of source zone architecture on bioremediation performance.


FEMS Microbiology Ecology | 2017

Resilience and recovery of Dehalococcoides mccartyi following low pH exposure

Yi Yang; Natalie L. Cápiro; Jun Yan; Tyler F. Marcet; Kurt D. Pennell; Frank E. Löffler

ABSTRACT Bioremediation treatment (e.g. biostimulation) can decrease groundwater pH with consequences for Dehalococcoides mccartyi (Dhc) reductive dechlorination activity. To explore the pH resilience of Dhc, the Dhc‐containing consortium BDI was exposed to pH 5.5 for up to 40 days. Following 8‐ and 16‐day exposure periods to pH 5.5, dechlorination activity and growth recovered when returned to pH 7.2; however, the ability of the culture to dechlorinate vinyl chloride (VC) to ethene was impaired (i.e. decreased rate of VC transformation). Dhc cells exposed to pH 5.5 for 40 days did not recover the ethene‐producing phenotype upon transfer to pH 7.2 even after 200 days of incubation. When returned to pH 7.2 conditions after an 8‐, a 16‐ and a 40‐day low pH exposure, tceA and vcrA genes showed distinct fold increases, suggesting Dhc strain‐specific responses to low pH exposure. Furthermore, a survey of Dhc biomarker genes in groundwater samples revealed the average abundances of Dhc 16S rRNA, tceA and vcrA genes in pH 4.5‐6 groundwater were significantly lower (P‐value < 0.05) than in pH 6‐8.3 groundwater. Overall, the results of the laboratory study and the assessment of field data demonstrate that sustained Dhc activity should not be expected in low pH groundwater, and the duration of low pH exposure affects the ability of Dhc to recover activity at circumneutral pH. &NA; Graphical Abstract Figure. Dehalococcoides can survive low pH stress and recover at least partial dechlorination activity at circumneutral pH, although the duration of low pH exposure affects detoxification potential.


Environmental Science & Technology | 2017

Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions

Yi Yang; Natalie L. Cápiro; Tyler F. Marcet; Jun Yan; Kurt D. Pennell; Frank E. Löffler

Bioremediation at chlorinated solvent sites often leads to groundwater acidification due to electron donor fermentation and enhanced dechlorination activity. The microbial reductive dechlorination process is robust at circumneutral pH, but activity declines at groundwater pH values below 6.0. Consistent with this observation, the activity of tetrachloroethene (PCE) dechlorinating cultures declined at pH 6.0 and was not sustained in pH 5.5 medium, with one notable exception. Sulfurospirillum multivorans dechlorinated PCE to cis-1,2-dichloroethene (cDCE) in pH 5.5 medium and maintained this activity upon repeated transfers. Microcosms established with soil and aquifer materials from five distinct locations dechlorinated PCE-to-ethene at pH 5.5 and pH 7.2. Dechlorination to ethene was maintained following repeated transfers at pH 7.2, but no ethene was produced at pH 5.5, and only the transfer cultures derived from the Axton Cross Superfund (ACS) microcosms sustained PCE dechlorination to cDCE as a final product. 16S rRNA gene amplicon sequencing of pH 7.2 and pH 5.5 ACS enrichments revealed distinct microbial communities, with the dominant dechlorinator being Dehalococcoides in pH 7.2 and Sulfurospirillum in pH 5.5 cultures. PCE-to-trichloroethene- (TCE-) and PCE-to-cDCE-dechlorinating isolates obtained from the ACS pH 5.5 enrichment shared 98.6%, and 98.5% 16S rRNA gene sequence similarities to Sulfurospirillum multivorans. These findings imply that sustained Dehalococcoides activity cannot be expected in low pH (i.e., ≤ 5.5) groundwater, and organohalide-respiring Sulfurospirillum spp. are key contributors to in situ PCE reductive dechlorination under low pH conditions.


Water Research | 2018

Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions

Tyler F. Marcet; Natalie L. Cápiro; Yi Yang; Frank E. Löffler; Kurt D. Pennell

Coupling in situ thermal treatment (ISTT) with microbial reductive dechlorination (MRD) has the potential to enhance contaminant degradation and reduce cleanup costs compared to conventional standalone remediation technologies. Impacts of low-temperature ISTT on Dehalococcoides mccartyi (Dhc), a relevant species in the anaerobic degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) to nontoxic ethene, were assessed in sand-packed columns under dynamic flow conditions. Dissolved tetrachloroethene (PCE; 258 ± 46 μM) was introduced to identical columns bioaugmented with the PCE-to-ethene dechlorinating consortium KB-1®. Initial column temperatures represented a typical aquifer (15 °C) or a site undergoing low-temperature ISTT (35 °C), and were subsequently increased to 35 and 74 °C, respectively, to assess temperature impacts on reductive dechlorination activity. In the 15 °C column, PCE was transformed primarily to cis-DCE (159 ± 2 μM), which was further degraded to VC (164 ± 3 μM) and ethene (30 ± 0 μM) within 17 pore volumes (PVs) after the temperature was increased to 35 °C. Regardless of the initial column temperature, ethene constituted >50 mol% of effluent degradation products in both columns after 73-74 PVs at 35 °C, indicating that MRD performance was greatly improved under low-temperature ISTT conditions. Increasing the temperature of the column initially at 35 °C resulted in continued VC and ethene production until a temperature of approximately 43 °C was reached, at which point Dhc activity substantially decreased. The abundance of the vcrA reductive dehalogenase gene exceeded that of the bvcA gene by 1-2.5 orders of magnitude at 15 °C, but this relationship inversed at temperatures >35 °C, suggesting Dhc strain-specific responses to temperature. These findings demonstrate improved MRD performance with low-temperature thermal treatment and emphasize potential synergistic effects at sites undergoing ISTT.


Environmental Science & Technology | 2018

Release of Electron Donors during Thermal Treatment of Soils

Tyler F. Marcet; Natalie L. Cápiro; Lawrence A. Morris; Sayed M. Hassan; Yi Yang; Frank E. Löffler; Kurt D. Pennell

Thermal treatment of soil and groundwater may provide an in situ source of soluble organic compounds and hydrogen (H2) that could stimulate microbial reductive dechlorination (MRD) at sites impacted by chlorinated solvents. The objectives of this study were to identify and quantify the release of electron donors and fermentable precursors during soil heating and to estimate availability of these compounds following thermal treatment. Fourteen solid materials containing <0.01 to 63.81 wt % organic carbon (OC) were incubated at 30, 60, or 90 °C for up to 180 d, leading to the release of direct electron donors (i.e., H2 and acetate) and fermentable volatile fatty acids (VFAs). Total VFA release ranged from 5 ± 0 × 10-9 carbon per gram solid (mol C/gs) during 30 °C incubation of quartz sand to 820 ± 50 × 10-6 mol C/gs during 90 °C incubation of humic acid, and was positively impacted by incubation time, temperature, and solid-phase OC content. H2 gas was detected at a maximum of 180 ± 50 × 10-9 mol H2/gs, accounting for less than 0.3% of reducing equivalents associated with VFAs released under the same conditions. These findings will allow for more reliable prediction of substrate release during thermal treatment, supporting the implementation of coupled thermal and biological remediation strategies.


Archive | 2014

Surfactant And Cosolvent Flushing

Kurt D. Pennell; Natalie L. Cápiro; Douglas I. Walker

When properly implemented, surfactant and cosolvent flushing technologies can recover substantial quantities of contaminant mass from chlorinated solvent source zones in relatively short time periods. As with most in situ remediation technologies, surfactant and cosolvent flushing are most effective in relatively homogeneous subsurface systems with sufficient permeability to allow for delivery of injected fluid and subsequent recovery of the contaminant. Under ideal conditions, surfactant and cosolvent flushing field trials have consistently resulted in contaminant mass recoveries of greater than 80 to 90% of the contaminant mass, although recoveries on the order of 50 to 70% are more likely at complex sites. Nevertheless, such reductions in contaminant mass hold the potential to reduce source zone longevity and downgradient contaminant mass flux, thereby reducing potential risks to the environment and public health. Recent advances in these technologies have focused on combining aggressive, short-term surfactant flushing technologies with lower impact, long-term strategies such as bioremediation, which hold promise as a means to more effectively achieve remediation goals and reduce overall treatment costs.

Collaboration


Dive into the Natalie L. Cápiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank E. Löffler

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Yang

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Benjamin K. Amos

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carmen Lebron

Naval Facilities Engineering Service Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet K. Hatt

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Yan

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge