Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie Van Zuydam is active.

Publication


Featured researches published by Natalie Van Zuydam.


PLOS ONE | 2013

Genetic loci for retinal arteriolar microcirculation

Xueling Sim; Richard Jensen; M. Kamran Ikram; Mary Frances Cotch; Xiaohui Li; Stuart MacGregor; Jing Xie; Albert V. Smith; Eric Boerwinkle; Paul Mitchell; Ronald Klein; Barbara Ek Klein; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Paulus T. V. M. de Jong; Albert Hofman; Fernando Rivadeneira; André G. Uitterlinden; Cornelia M. van Duijn; Thor Aspelund; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Lenore J. Launer; John Attia; Paul N. Baird; Stephen B. Harrap; Elizabeth G. Holliday

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10−8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10−12 in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.


The New England Journal of Medicine | 2014

Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem

BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).


Investigative Ophthalmology & Visual Science | 2011

Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: The candidate gene association resource (CARe)

Lucia Sobrin; Todd Green; Xueling Sim; Richard Jensen; E. Shyong Tai; Wan Ting Tay; Jie Jin Wang; Paul Mitchell; Niina Sandholm; Yiyuan Liu; Kustaa Hietala; Sudha K. Iyengar; Matthew Brooks; Monika Buraczynska; Natalie Van Zuydam; Albert V. Smith; Vilmundur Gudnason; Alex S. F. Doney; Andrew D. Morris; Graham P. Leese; Colin N. A. Palmer; Anand Swaroop; Herman A. Taylor; James G. Wilson; Alan D. Penman; Ching J. Chen; Per-Henrik Groop; Seang-Mei Saw; Tin Aung; Barbara E. K. Klein

PURPOSE To investigate whether variants in cardiovascular candidate genes, some of which have been previously associated with type 2 diabetes (T2D), diabetic retinopathy (DR), and diabetic nephropathy (DN), are associated with DR in the Candidate gene Association Resource (CARe). METHODS Persons with T2D who were enrolled in the study (n = 2691) had fundus photography and genotyping of single nucleotide polymorphisms (SNPs) in 2000 candidate genes. Two case definitions were investigated: Early Treatment Diabetic Retinopathy Study (ETDRS) grades ≥ 14 and ≥ 30. The χ² analyses for each CARe cohort were combined by Cochran-Mantel-Haenszel (CMH) pooling of odds ratios (ORs) and corrected for multiple hypothesis testing. Logistic regression was performed with adjustment for other DR risk factors. Results from replication in independent cohorts were analyzed with CMH meta-analysis methods. RESULTS Among 39 genes previously associated with DR, DN, or T2D, three SNPs in P-selectin (SELP) were associated with DR. The strongest association was to rs6128 (OR = 0.43, P = 0.0001, after Bonferroni correction). These associations remained significant after adjustment for DR risk factors. Among other genes examined, several variants were associated with DR with significant P values, including rs6856425 tagging α-l-iduronidase (IDUA) (P = 2.1 × 10(-5), after Bonferroni correction). However, replication in independent cohorts did not reveal study-wide significant effects. The P values after replication were 0.55 and 0.10 for rs6128 and rs6856425, respectively. CONCLUSIONS Genes associated with DN, T2D, and vascular diseases do not appear to be consistently associated with DR. A few genetic variants associated with DR, particularly those in SELP and near IDUA, should be investigated in additional DR cohorts.


Journal of the American Heart Association | 2015

Sex-Specific Effects of Adiponectin on Carotid Intima-Media Thickness and Incident Cardiovascular Disease

Jonas Persson; Rona J. Strawbridge; Olga McLeod; Karl Gertow; Angela Silveira; Damiano Baldassarre; Natalie Van Zuydam; Sonia Shah; Cristiano Fava; Stefan Gustafsson; Fabrizio Veglia; Bengt Sennblad; Malin Larsson; Maria Sabater-Lleal; Karin Leander; Bruna Gigante; Adam G. Tabak; Mika Kivimäki; Jussi Kauhanen; Rainer Rauramaa; Andries J. Smit; Elmo Mannarino; Philippe Giral; Steve E. Humphries; Elena Tremoli; Ulf de Faire; Lars Lind; Erik Ingelsson; Bo Hedblad; Olle Melander

Background Plasma adiponectin levels have previously been inversely associated with carotid intima-media thickness (IMT), a marker of subclinical atherosclerosis. In this study, we used a sex-stratified Mendelian randomization approach to investigate whether adiponectin has a causal protective influence on IMT. Methods and Results Baseline plasma adiponectin concentration was tested for association with baseline IMT, IMT progression over 30 months, and occurrence of cardiovascular events within 3 years in 3430 participants (women, n =1777; men, n =1653) with high cardiovascular risk but no prevalent disease. Plasma adiponectin levels were inversely associated with baseline mean bifurcation IMT after adjustment for established risk factors (β =−0.018, P<0.001) in men but not in women (β =−0.006, P =0.185; P for interaction =0.061). Adiponectin levels were inversely associated with progression of mean common carotid IMT in men (β =−0.0022, P =0.047), whereas no association was seen in women (0.0007, P =0.475; P for interaction =0.018). Moreover, we observed that adiponectin levels were inversely associated with coronary events in women (hazard ratio 0.57, 95% CI 0.37 to 0.87) but not in men (hazard ratio 0.82, 95% CI 0.54 to 1.25). A gene score of adiponectin-raising alleles in 6 loci, reported recently in a large multi-ethnic meta-analysis, was inversely associated with baseline mean bifurcation IMT in men (β =−0.0008, P =0.004) but not in women (β =−0.0003, P =0.522; P for interaction =0.007). Conclusions This report provides some evidence for adiponectin protecting against atherosclerosis, with effects being confined to men; however, compared with established cardiovascular risk factors, the effect of plasma adiponectin was modest. Further investigation involving mechanistic studies is warranted.


The Lancet Diabetes & Endocrinology | 2014

Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis

Kaixin Zhou; Louise A. Donnelly; Jian Yang; Miaoxin Li; Harshal Deshmukh; Natalie Van Zuydam; Emma Ahlqvist; Chris C. A. Spencer; Leif Groop; Andrew D. Morris; Helen M. Colhoun; Pak Sham; Mark I. McCarthy; Colin N. A. Palmer; Ewan R. Pearson

Summary Background Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method. Methods In this GCTA study, we obtained data about HbA1c concentrations before and during metformin treatment from patients in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study, which includes a cohort of patients with type 2 diabetes and is linked to comprehensive clinical databases and genome-wide association study data. We applied the GCTA method to estimate heritability for four definitions of glycaemic response to metformin: absolute reduction in HbA1c; proportional reduction in HbA1c; adjusted reduction in HbA1c; and whether or not the target on-treatment HbA1c of less than 7% (53 mmol/mol) was achieved, with adjustment for baseline HbA1c and known clinical covariates. Chromosome-wise heritability estimation was used to obtain further information about the genetic architecture. Findings 5386 individuals were included in the final dataset, of whom 2085 had enough clinical data to define glycaemic response to metformin. The heritability of glycaemic response to metformin varied by response phenotype, with a heritability of 34% (95% CI 1–68; p=0·022) for the absolute reduction in HbA1c, adjusted for pretreatment HbA1c. Chromosome-wise heritability estimates suggest that the genetic contribution is probably from individual variants scattered across the genome, which each have a small to moderate effect, rather than from a few loci that each have a large effect. Interpretation Glycaemic response to metformin is heritable, thus glycaemic response to metformin is, in part, intrinsic to individual biological variation. Further genetic analysis might enable us to make better predictions for stratified medicine and to unravel new mechanisms of metformin action. Funding Wellcome Trust.


Diabetologia | 2015

Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes

Helen C. Looker; Marco Colombo; Felix Agakov; Tanja Zeller; Leif Groop; Barbara Thorand; Colin N. A. Palmer; Anders Hamsten; Ulf de Faire; Everson Nogoceke; Shona J. Livingstone; Veikko Salomaa; Karin Leander; Nicola Barbarini; Riccardo Bellazzi; Natalie Van Zuydam; Paul M. McKeigue; Helen M. Colhoun

Aims/hypothesisWe selected the most informative protein biomarkers for the prediction of incident cardiovascular disease (CVD) in people with type 2 diabetes.MethodsIn this nested case–control study we measured 42 candidate CVD biomarkers in 1,123 incident CVD cases and 1,187 controls with type 2 diabetes selected from five European centres. Combinations of biomarkers were selected using cross-validated logistic regression models. Model prediction was assessed using the area under the receiver operating characteristic curve (AUROC).ResultsSixteen biomarkers showed univariate associations with incident CVD. The most predictive subset selected by forward selection methods contained six biomarkers: N-terminal pro-B-type natriuretic peptide (OR 1.69 per 1 SD, 95% CI 1.47, 1.95), high-sensitivity troponin T (OR 1.29, 95% CI 1.11, 1.51), IL-6 (OR 1.13, 95% CI 1.02, 1.25), IL-15 (OR 1.15, 95% CI 1.01, 1.31), apolipoprotein C-III (OR 0.79, 95% CI 0.70, 0.88) and soluble receptor for AGE (OR 0.84, 95% CI 0.76, 0.94). The prediction of CVD beyond clinical covariates improved from an AUROC of 0.66 to 0.72 (AUROC for Framingham Risk Score covariates 0.59). In addition to the biomarkers, the most important clinical covariates for improving prediction beyond the Framingham covariates were estimated GFR, insulin therapy and HbA1c.Conclusions/interpretationWe identified six protein biomarkers that in combination with clinical covariates improved the prediction of our model beyond the Framingham Score covariates. Biomarkers can contribute to improved prediction of CVD in diabetes but clinical data including measures of renal function and diabetes-specific factors not included in the Framingham Risk Score are also needed.


Journal of The American Society of Nephrology | 2017

The Genetic Landscape of Renal Complications in Type 1 Diabetes

Niina Sandholm; Natalie Van Zuydam; Emma Ahlqvist; Thorhildur Juliusdottir; Harshal Deshmukh; N. William Rayner; Barbara Di Camillo; Carol Forsblom; João Fadista; Daniel Ziemek; Rany M. Salem; Linda T. Hiraki; Marcus G. Pezzolesi; David Tregouet; Emma Dahlström; Erkka Valo; Nikolay Oskolkov; Claes Ladenvall; M. Loredana Marcovecchio; Jason D. Cooper; Francesco Sambo; Alberto Malovini; Marco Manfrini; Amy Jayne McKnight; Maria Lajer; Valma Harjutsalo; Daniel Gordin; Maija Parkkonen; Valeriya Lyssenko; Paul McKeigue

Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4×10-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2×10-5) and the risk of type 2 diabetes (P=6.1×10-4) associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1×10-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0×10-6), and pentose and glucuronate interconversions (P=3.0×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.


Pharmacogenetics and Genomics | 2013

Robust association of the LPA locus with low-density lipoprotein cholesterol lowering response to statin treatment in a meta-analysis of 30 467 individuals from both randomized control trials and observational studies and association with coronary artery disease outcome during statin treatment

Louise A. Donnelly; Natalie Van Zuydam; Kaixin Zhou; Roger Tavendale; Fiona Carr; Anke H. Maitland-van der Zee; Maarten Leusink; Anthonius de Boer; Pieter A. Doevendans; Folkert W. Asselbergs; Andrew D. Morris; Ewan R. Pearson; Olaf H. Klungel; Alex S. F. Doney; Colin N. A. Palmer

Objectives The LPA single-nucleotide polymorphism rs10455872 has been associated with low-density lipoprotein cholesterol (LDLc) lowering response to statins in several randomized control trials (RCTs) and is a known coronary artery disease (CAD) marker. However, it is unclear what residual risk of CAD this marker may have during statin treatment. Methods Using electronic medical records linked to the GoDARTS genotyped population, we identified over 8000 patients on statins in Tayside, Scotland. Results We replicated the findings of the RCTs, with the G allele of rs10455872 being associated with a 0.10 mmol/l per allele poorer reduction in LDLc in response to statin treatment, and conducted a meta-analysis with previously published RCTs (P=1.46×10−29, n=30 467). We showed an association between rs10455872 and CAD in statin-treated individuals and have replicated this finding in the Utrecht Cardiovascular Pharmacogenetics study (combined odds ratio 1.41, 95% confidence interval 1.17–1.68, P=4.5×10−5, n=8822) suggesting that statin treatment does not abrogate this well-established genetic risk for CAD. Furthermore, in a Cox proportional hazards model with LDLc measured time dependently, we demonstrated that the relationship between CAD and rs10455872 was independent of LDLc during statin treatment. Conclusion Individuals with the G allele of rs10455872, which represents approximately one in seven patients, have a higher risk of CAD than the majority of the population even after treatment with statins; and therefore represent a vulnerable group requiring an alternative medication in addition to statin treatment.


American Journal of Human Genetics | 2016

Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity

Anubha Mahajan; Aylin R. Rodan; Thu H. Le; Kyle J. Gaulton; Jeff Haessler; Adrienne M. Stilp; Yoichiro Kamatani; Gu Zhu; Tamar Sofer; Sanjana Puri; Jeffrey N. Schellinger; Pei-Lun Chu; Sylvia Cechova; Natalie Van Zuydam; Johan Ärnlöv; Michael F. Flessner; Vilmantas Giedraitis; Andrew C. Heath; Michiaki Kubo; Anders Larsson; Cecilia M. Lindgren; Pamela A. F. Madden; Grant W. Montgomery; George J. Papanicolaou; Alex P. Reiner; Johan Sundström; Timothy A. Thornton; Lars Lind; Erik Ingelsson; Jianwen Cai

We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10−8) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of “credible sets” of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.

Collaboration


Dive into the Natalie Van Zuydam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niina Sandholm

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge