Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalie Woodman is active.

Publication


Featured researches published by Natalie Woodman.


Science Signaling | 2014

The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility

Tai Kiuchi; Elena Ortiz-Zapater; James Monypenny; Daniel R. Matthews; Lan K. Nguyen; Jody Barbeau; Oana Coban; Katherine Lawler; Brian Burford; Daniel J. Rolfe; Emanuele de Rinaldis; Dimitra Dafou; Michael A. Simpson; Natalie Woodman; Sarah Pinder; Cheryl Gillett; Viviane Devauges; Simon P. Poland; Gilbert O. Fruhwirth; Pierfrancesco Marra; Ykelien L. Boersma; Andreas Plückthun; William J. Gullick; Yosef Yarden; George Santis; Martyn Winn; Boris N. Kholodenko; Marisa L. Martin-Fernandez; Peter J. Parker; Andrew Tutt

Dimerization of EGFR with an ErbB4 receptor variant increases growth factor–induced migration of breast cancer cells. Drug Resistance Through Dimerization The epidermal growth factor receptor (EGFR) is often targeted in various cancers, including breast cancer. The EGFR can dimerize with related receptors in the ErbB family, and formation of these heterodimers is associated with the development of resistance to EGFR inhibitors. Kiuchi et al. found that binding of EGFR to a naturally occurring variant of the receptor ErbB4 prevented a ubiquitin E3 ligase from associating with EGFR and triggering its breakdown. The migration of breast cancer cells to EGFR ligands was increased when EGFR was overexpressed with the ErbB4 variant, but not with a mutant that could not dimerize with EGFR. Furthermore, the transcript for this ErbB4 variant was increased in a subset of breast cancer patients. The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor–stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2– breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.


Journal of Clinical Oncology | 2016

Phase II Randomized Preoperative Window-of-Opportunity Study of the PI3K Inhibitor Pictilisib Plus Anastrozole Compared With Anastrozole Alone in Patients With Estrogen Receptor–Positive Breast Cancer

Peter Schmid; Sarah Pinder; Duncan Wheatley; Jane Macaskill; Charles Zammit; Jennifer Hu; Robert G. Price; N.J. Bundred; Sirwan M. Hadad; Alice Shia; Shah-Jalal Sarker; Louise Lim; Patrycja Gazinska; Natalie Woodman; Darren Korbie; Matt Trau; Paul N. Mainwaring; Steven Gendreau; Mark R. Lackner; Mika K. Derynck; Timothy R. Wilson; Hannah Butler; Gemma Earl; Peter J. Parker; Arnie Purushotham; Alastair M. Thompson

PURPOSE Preclinical data support a key role for the PI3K pathway in estrogen receptor-positive breast cancer and suggest that combining PI3K inhibitors with endocrine therapy may overcome resistance. This preoperative window study assessed whether adding the PI3K inhibitor pictilisib (GDC-0941) can increase the antitumor effects of anastrozole in primary breast cancer and aimed to identify the most appropriate patient population for combination therapy. PATIENTS AND METHODS In this randomized, open-label phase II trial, postmenopausal women with newly diagnosed operable estrogen receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancers were recruited. Participants were randomly allocated (2:1, favoring the combination) to 2 weeks of preoperative treatment with anastrozole 1 mg once per day (n = 26) or the combination of anastrozole 1 mg with pictilisib 260 mg once per day (n = 49). The primary end point was inhibition of tumor cell proliferation as measured by change in Ki-67 protein expression between tumor samples taken before and at the end of treatment. RESULTS There was significantly greater geometric mean Ki-67 suppression of 83.8% (one-sided 95% CI, ≥ 79.0%) for the combination and 66.0% (95% CI, ≤ 75.4%) for anastrozole (geometric mean ratio [combination:anastrozole], 0.48; 95% CI, ≤ 0.72; P = .004). PIK3CA mutations were not predictive of response to pictilisib, but there was significant interaction between response to treatment and molecular subtype (P = .03); for patients with luminal B tumors, the combination:anastrozole geometric mean ratio of Ki-67 suppression was 0.37 (95% CI, ≤ 0.67; P = .008), whereas no significant Ki-67 response was observed for pictilisib in luminal A tumors (1.01; P = .98). Multivariable analysis confirmed Ki-67 response to the combination treatment of patients with luminal B tumors irrespective of progesterone receptor status or baseline Ki-67 expression. CONCLUSION Adding pictilisib to anastrozole significantly increases suppression of tumor cell proliferation in luminal B primary breast cancer.


Cancer Research | 2017

Anti-folate receptor-α IgE but not IgG recruits macrophages to attack tumors via TNFa/MCP-1 signaling

Debra H. Josephs; Heather J. Bax; Tihomir Dodev; Mirella Georgouli; Mano Nakamura; Giulia Pellizzari; Louise Saul; Panagiotis Karagiannis; Anthony Cheung; Cecilia Herraiz; Kristina M. Ilieva; Isabel Correa; Matthew Fittall; Silvia Crescioli; Patrycja Gazinska; Natalie Woodman; Silvia Mele; Giulia Chiaruttini; Amy E. Gilbert; Alexander Koers; Marguerite G. Bracher; Christopher Selkirk; Heike Lentfer; Claire Barton; Elliott Lever; Gareth Muirhead; Sophia Tsoka; Silvana Canevari; Mariangela Figini; Ana Montes

IgE antibodies are key mediators of antiparasitic immune responses, but their potential for cancer treatment via antibody-dependent cell-mediated cytotoxicity (ADCC) has been little studied. Recently, tumor antigen-specific IgEs were reported to restrict cancer cell growth by engaging high-affinity Fc receptors on monocytes and macrophages; however, the underlying therapeutic mechanisms were undefined and in vivo proof of concept was limited. Here, an immunocompetent rat model was designed to recapitulate the human IgE-Fcε receptor system for cancer studies. We also generated rat IgE and IgG mAbs specific for the folate receptor (FRα), which is expressed widely on human ovarian tumors, along with a syngeneic rat tumor model expressing human FRα. Compared with IgG, anti-FRα IgE reduced lung metastases. This effect was associated with increased intratumoral infiltration by TNFα+ and CD80+ macrophages plus elevated TNFα and the macrophage chemoattractant MCP-1 in lung bronchoalveolar lavage fluid. Increased levels of TNFα and MCP-1 correlated with IgE-mediated tumor cytotoxicity by human monocytes and with longer patient survival in clinical specimens of ovarian cancer. Monocytes responded to IgE but not IgG exposure by upregulating TNFα, which in turn induced MCP-1 production by monocytes and tumor cells to promote a monocyte chemotactic response. Conversely, blocking TNFα receptor signaling abrogated induction of MCP-1, implicating it in the antitumor effects of IgE. Overall, these findings show how antitumor IgE reprograms monocytes and macrophages in the tumor microenvironment, encouraging the clinical use of IgE antibody technology to attack cancer beyond the present exclusive reliance on IgG. Cancer Res; 77(5); 1127-41. ©2017 AACR.


Integrative Biology | 2011

The challenges of integrating molecular imaging into the optimization of cancer therapy

Gargi Patel; Tai Kiuchi; Katherine Lawler; Enyinnaya Ofo; Gilbert O. Fruhwirth; Muireann T. Kelleher; E Shamil; Rui Zhang; Paul R. Selvin; George Santis; James Spicer; Natalie Woodman; Cheryl Gillett; Paul R. Barber; Boris Vojnovic; György Kéri; Tobias Schaeffter; Vicky Goh; Michael O'Doherty; Peter R. Ellis; Tony Ng

We review novel, in vivo and tissue-based imaging technologies that monitor and optimize cancer therapeutics. Recent advances in cancer treatment centre around the development of targeted therapies and personalisation of treatment regimes to individual tumour characteristics. However, clinical outcomes have not improved as expected. Further development of the use of molecular imaging to predict or assess treatment response must address spatial heterogeneity of cancer within the body. A combination of different imaging modalities should be used to relate the effect of the drug to dosing regimen or effective drug concentration at the local site of action. Molecular imaging provides a functional and dynamic read-out of cancer therapeutics, from nanometre to whole body scale. At the whole body scale, an increase in the sensitivity and specificity of the imaging probe is required to localise (micro)metastatic foci and/or residual disease that are currently below the limit of detection. The use of image-guided endoscopic biopsy can produce tumour cells or tissues for nanoscopic analysis in a relatively patient-compliant manner, thereby linking clinical imaging to a more precise assessment of molecular mechanisms. This multimodality imaging approach (in combination with genetics/genomic information) could be used to bridge the gap between our knowledge of mechanisms underlying the processes of metastasis, tumour dormancy and routine clinical practice. Treatment regimes could therefore be individually tailored both at diagnosis and throughout treatment, through monitoring of drug pharmacodynamics providing an early read-out of response or resistance.


Cancer Research | 2017

RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers

Sheeba Irshad; Fabian Flores-Borja; Katherine Lawler; James Monypenny; Rachel Evans; Victoria Male; Peter Gordon; Anthony Cheung; Patrycja Gazinska; Farzana Noor; Felix Wong; Anita Grigoriadis; Gilbert O. Fruhwirth; Paul R. Barber; Natalie Woodman; Dominic Patel; Manuel Rodriguez-Justo; Julie Owen; Stewart G. Martin; Sarah Pinder; Cheryl Gillett; Simon P. Poland; Simon Ameer-Beg; Frank McCaughan; Leo M. Carlin; Uzma Hasan; David R. Withers; Peter J. L. Lane; Borivoj Vojnovic; Sergio A. Quezada

Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME. Cancer Res; 77(5); 1083-96. ©2017 AACR.


Cancer Letters | 2017

Intracavitary ‘T4 immunotherapy’ of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells

Astero Klampatsa; Daniela Achkova; David M. Davies; Ana C. Parente-Pereira; Natalie Woodman; James Rosekilly; Georgina Osborne; Thivyan Thayaparan; Andrea Bille; Michael Sheaf; James Spicer; Juliet King; John Maher

Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4+ T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma.


International Journal of Oncology | 2016

Two E-selectin ligands, BST-2 and LGALS3BP, predict metastasis and poor survival of ER-negative breast cancer

Natalie Woodman; Sarah Pinder; Virginia Tajadura; Xuefen Le Bourhis; Cheryl Gillett; Philippe Delannoy; Joy Burchell; Sylvain Julien

Distant metastases account for the majority of cancer-related deaths in breast cancer. The rate and site of metastasis differ between estrogen receptor (ER)-negative and ER-positive tumours, and metastatic fate can be very diverse even within the ER-negative group. Characterisation of new pro-metastatic markers may help to identify patients with higher risk and improve their care accordingly. Selectin ligands aberrantly expressed by cancer cells promote metastasis by enabling interaction between circulating tumour cells and endothelial cells in distant organs. These ligands consist in carbohydrate molecules, such as sialyl-Lewis x antigen (sLex), borne by glycoproteins or glycolipids on the cancer cell surface. We have previously demonstrated that the molecular scaffold presenting sLex to selectins (e.g. glycolipid vs. glycoproteins) was crucial for these interactions to occur. Moreover, we reported that detection of sLex alone in breast carcinomas was only of limited prognostic value. However, since sLex was found to be carried by several glycoproteins in cancer cells, we hypothesized that the combination of the carbohydrate with its carriers could be more relevant than each marker independently. In this study, we addressed this question by analysing sLex expression together with two glycoproteins (BST-2 and LGALS3BP), shown to interact with E-selectin in a carbohydrate-dependent manner, in a cohort of 249 invasive breast cancers. We found both glycoproteins to be associated with distant metastasis risk and poorer survival. Importantly, concomitant high expression of BST-2 with sLex defined a sub-group of patients with ER-negative tumours displaying higher risks of liver and brain metastasis and a 3-fold decreased survival rate.


Oncotarget | 2016

HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status

Gregory Weitsman; Paul R. Barber; Lan K. Nguyen; Katherine Lawler; Gargi Patel; Natalie Woodman; Muireann T. Kelleher; Sarah Pinder; Mark Rowley; Paul Ellis; Anand D. Purushotham; A C C Coolen; Boris N. Kholodenko; Borivoj Vojnovic; Cheryl Gillett; Tony Ng

Overexpression of HER2 is an important prognostic marker, and the only predictive biomarker of response to HER2-targeted therapies in invasive breast cancer. HER2-HER3 dimer has been shown to drive proliferation and tumor progression, and targeting of this dimer with pertuzumab alongside chemotherapy and trastuzumab, has shown significant clinical utility. The purpose of this study was to accurately quantify HER2-HER3 dimerisation in formalin fixed paraffin embedded (FFPE) breast cancer tissue as a novel prognostic biomarker. FFPE tissues were obtained from patients included in the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study. HER2-HER3 dimerisation was quantified using an improved fluorescence lifetime imaging microscopy (FLIM) histology-based analysis. Analysis of 131 tissue microarray cores demonstrated that the extent of HER2-HER3 dimer formation as measured by Förster Resonance Energy Transfer (FRET) determined through FLIM predicts the likelihood of metastatic relapse up to 10 years after surgery (hazard ratio 3.91 (1.61–9.5), p = 0.003) independently of HER2 expression, in a multivariate model. Interestingly there was no correlation between the level of HER2 protein expressed and HER2-HER3 heterodimer formation. We used a mathematical model that takes into account the complex interactions in a network of all four HER proteins to explain this counterintuitive finding. Future utility of this technique may highlight a group of patients who do not overexpress HER2 protein but are nevertheless dependent on the HER2-HER3 heterodimer as driver of proliferation. This assay could, if validated in a group of patients treated with, for instance pertuzumab, be used as a predictive biomarker to predict for response to such targeted therapies.


Biochemical Society Transactions | 2014

Imaging tumour heterogeneity of the consequences of a PKCα-substrate interaction in breast cancer patients.

Gregory Weitsman; Katherine Lawler; Muireann T. Kelleher; James E. Barrett; Paul R. Barber; E Shamil; Frederic Festy; Gargi Patel; Gilbert O. Fruhwirth; Lufei Huang; Iain Tullis; Natalie Woodman; Enyinnaya Ofo; Simon Ameer-Beg; Sheeba Irshad; John Condeelis; Cheryl Gillett; Paul Ellis; Borivoj Vojnovic; A C C Coolen; Tony Ng

Breast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical evidence indicates that future prognostic signatures need evaluation in the context of early compared with late metastatic risk prediction. In pre-clinical studies, we and others have shown that various protein-protein interactions, pertaining to the actin microfilament-associated proteins, ezrin and cofilin, mediate breast cancer cell migration, a prerequisite for cancer metastasis. Moreover, as a direct substrate for protein kinase Cα, ezrin has been shown to be a determinant of cancer metastasis for a variety of tumour types, besides breast cancer; and has been described as a pivotal regulator of metastasis by linking the plasma membrane to the actin cytoskeleton. In the present article, we demonstrate that our tissue imaging-derived parameters that pertain to or are a consequence of the PKC-ezrin interaction can be used for breast cancer prognostication, with inter-cohort reproducibility. The application of fluorescence lifetime imaging microscopy (FLIM) in formalin-fixed paraffin-embedded patient samples to probe protein proximity within the typically <10 nm range to address the oncological challenge of tumour heterogeneity, is discussed.


OncoImmunology | 2017

CAR T-cell immunotherapy of MET-expressing malignant mesothelioma

Thivyan Thayaparan; Roseanna Petrovic; Daniela Achkova; Tomasz Zabinski; David M. Davies; Astero Klampatsa; Ana C. Parente-Pereira; Lynsey M. Whilding; Sjoukje J. C. van der Stegen; Natalie Woodman; Michael Sheaff; Jennifer R. Cochran; James Spicer; John Maher

ABSTRACT Mesothelioma is an incurable cancer for which effective therapies are required. Aberrant MET expression is prevalent in mesothelioma, although targeting using small molecule-based therapeutics has proven disappointing. Chimeric antigen receptors (CARs) couple the HLA-independent binding of a cell surface target to the delivery of a tailored T-cell activating signal. Here, we evaluated the anti-tumor activity of MET re-targeted CAR T-cells against mesothelioma. Using immunohistochemistry, MET was detected in 67% of malignant pleural mesotheliomas, most frequently of epithelioid or biphasic subtype. The presence of MET did not influence patient survival. Candidate MET-specific CARs were engineered in which a CD28+CD3ζ endodomain was fused to one of 3 peptides derived from the N and K1 domains of hepatocyte growth factor (HGF), which represents the minimum MET binding element present in this growth factor. Using an NIH3T3-based artificial antigen-presenting cell system, we found that all 3 candidate CARs demonstrated high specificity for MET. By contrast, these CARs did not mediate T-cell activation upon engagement of other HGF binding partners, namely CD44v6 or heparan sulfate proteoglycans, including Syndecan-1. NK1-targeted CARs demonstrated broadly similar in vitro potency, indicated by destruction of MET-expressing mesothelioma cell lines, accompanied by cytokine release. In vivo anti-tumor activity was demonstrated following intraperitoneal delivery to mice with an established mesothelioma xenograft. Progressive tumor regression occurred without weight loss or other clinical indicators of toxicity. These data confirm the frequent expression of MET in malignant pleural mesothelioma and demonstrate that this can be targeted effectively and safely using a CAR T-cell immunotherapeutic strategy.

Collaboration


Dive into the Natalie Woodman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony Ng

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge