Nataliya Miropolskaya
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nataliya Miropolskaya.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Nataliya Miropolskaya; Irina Artsimovitch; Saulius Klimašauskas; Vadim Nikiforov; Andrey Kulbachinskiy
Bacterial RNA polymerases (RNAPs) undergo coordinated conformational changes during catalysis. In particular, concerted folding of the trigger loop and rearrangements of the bridge helix at the RNAP active center have been implicated in nucleotide addition and RNAP translocation. At moderate temperatures, the rate of catalysis by RNAP from thermophilic Thermus aquaticus is dramatically reduced compared with its closest mesophilic relative, Deinococcus radiodurans. Here, we show that a part of this difference is conferred by a third element, the F loop, which is adjacent to the N terminus of the bridge helix and directly contacts the folded trigger loop. Substitutions of amino acid residues in the F loop and in an adjacent segment of the bridge helix in T. aquaticus RNAP for their D. radiodurans counterparts significantly increased the rate of catalysis (up to 40-fold at 20 °C). A deletion in the F loop dramatically impaired the rate of nucleotide addition and pyrophosphorolysis, but it had only a moderate effect on intrinsic RNA cleavage. Streptolydigin, an antibiotic that blocks folding of the trigger loop, did not inhibit nucleotide addition by the mutant enzyme. The resistance to streptolydigin likely results from the loss of its functional target, the folding of the trigger loop, which is already impaired by the F-loop deletion. Our results demonstrate that the F loop is essential for proper folding of the trigger loop during nucleotide addition and governs the temperature adaptivity of RNAPs in different bacteria.
Nucleic Acids Research | 2010
Danil Pupov; Nataliya Miropolskaya; Anastasiya Sevostyanova; Irina Bass; Irina Artsimovitch; Andrey Kulbachinskiy
Interactions of RNA polymerase (RNAP) with nucleic acids must be tightly controlled to ensure precise and processive RNA synthesis. The RNAP β′-subunit Switch-2 (SW2) region is part of a protein network that connects the clamp domain with the RNAP body and mediates opening and closing of the active center cleft. SW2 interacts with the template DNA near the RNAP active center and is a target for antibiotics that block DNA melting during initiation. Here, we show that substitutions of a conserved Arg339 residue in the Escherichia coli RNAP SW2 confer diverse effects on transcription that include defects in DNA melting in promoter complexes, decreased stability of RNAP/promoter complexes, increased apparent KM for initiating nucleotide substrates (2- to 13-fold for different substitutions), decreased efficiency of promoter escape, and decreased stability of elongation complexes. We propose that interactions of Arg339 with DNA directly stabilize transcription complexes to promote stable closure of the clamp domain around nucleic acids. During initiation, SW2 may cooperate with the σ3.2 region to stabilize the template DNA strand in the RNAP active site. Together, our data suggest that SW2 may serve as a key regulatory element that affects transcription initiation and RNAP processivity through controlling RNAP/DNA template interactions.
Nucleic Acids Research | 2014
Nataliya Miropolskaya; Daria Esyunina; Saulius Klimašauskas; Vadim Nikiforov; Irina Artsimovitch; Andrey Kulbachinskiy
The trigger loop (TL) in the RNA polymerase (RNAP) active center plays key roles in the reactions of nucleotide addition and RNA cleavage catalyzed by RNAP. The adjacent F loop (FL) was proposed to contribute to RNAP catalysis by modulating structural changes in the TL. Here, we investigate the interplay between these two elements during transcription by bacterial RNAP. Thermodynamic analysis of catalysis by RNAP variants with mutations in the TL and FL suggests that the TL is the key element required for temperature activation in RNAP catalysis, and that the FL promotes TL transitions during nucleotide addition. We reveal characteristic differences in the catalytic parameters between thermophilic Thermus aquaticus and mesophilic Deinococcus radiodurans RNAPs and identify the FL as an adaptable element responsible for the observed differеnces. Mutations in the FL also significantly affect the rate of intrinsic RNA cleavage in a TL-dependent manner. In contrast, much weaker effects of the FL and TL mutations on GreA-assisted RNA cleavage suggest that the FL-dependent TL transitions are not required for this reaction. Thus, functional interplay between the FL and TL is essential for various catalytic activities of RNAP and plays an adaptive role in catalysis by thermophilic and mesophilic enzymes.
Journal of Biological Chemistry | 2012
Nataliya Miropolskaya; Artem Ignatov; Irina Bass; Ekaterina F. Zhilina; Danil Pupov; Andrey Kulbachinskiy
Background: RNA polymerases (RNAPs) from Thermus aquaticus and Escherichia coli differ in many aspects of transcription initiation. Results: Regions 1.1 and 1.2 of the σ subunit determine instability and cold sensitivity of promoter complexes of T. aquaticus RNAP. Conclusion: Substitutions in σ regions 1.1 and 1.2 modulate RNAP-promoter interactions. Significance: Evolutionary changes in the σ subunit determine functional differences between bacterial RNAPs during transcription initiation. RNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.2 of the E. coli σ70 and T. aquaticus σA subunits. In particular, region 1.1 and, to a lesser extent, region 1.2 of the E. coli σ70 subunit determine higher promoter complex stability of E. coli RNAP. On the other hand, nonconserved amino acid substitutions in region 1.2, but not region 1.1, contribute to the differences in promoter opening between E. coli and T. aquaticus RNAPs, likely through affecting the σ subunit contacts with DNA nucleotides downstream of the −10 element. At the same time, substitutions in σ regions 1.1 and 1.2 do not affect promoter escape by E. coli and T. aquaticus RNAPs. Thus, evolutionary substitutions in various regions of the σ subunit modulate different steps of the open promoter complex formation pathway, with regions 1.1 and 1.2 affecting promoter complex stability and region 1.2 involved in DNA melting during initiation.
Transcription | 2010
Nataliya Miropolskaya; Vadim Nikiforov; Saulius Klimašauskas; Irina Artsimovitch; Andrey Kulbachinskiy
Folding of the trigger loop of RNA polymerase promotes nucleotide addition through creating a closed, catalytically competent conformation of the active center. Here, we discuss the impact of adjacent RNA polymerase elements, including the F loop and the jaw domain, as well as external regulatory factors on the trigger loop folding and catalysis.
DNA Repair | 2014
Alena V. Makarova; Artem Ignatov; Nataliya Miropolskaya; Andrey Kulbachinskiy
Human DNA polymerase iota (Pol ι) is a Y-family polymerase that can bypass various DNA lesions but possesses very low fidelity of DNA synthesis in vitro. Structural analysis of Pol ι revealed a narrow active site that promotes noncanonical base-pairing during catalysis. To better understand the structure-function relationships in the active site of Pol ι we investigated substitutions of individual amino acid residues in its fingers domain that contact either the templating or the incoming nucleotide. Two of the substitutions, Y39A and Q59A, significantly decreased the catalytic activity but improved the fidelity of Pol ι. Surprisingly, in the presence of Mn(2+) ions, the wild-type and mutant Pol ι variants efficiently incorporated nucleotides opposite template purines containing modifications that disrupted either Hoogsteen or Watson-Crick base-pairing, suggesting that Pol ι may use various types of interactions during nucleotide addition. In contrast, in Mg(2+) reactions, wild-type Pol ι was dependent on Hoogsteen base-pairing, the Y39A mutant was essentially inactive, and the Q59A mutant promoted Watson-Crick interactions with template purines. The results suggest that Pol ι utilizes distinct mechanisms of nucleotide incorporation depending on the metal cofactor and reveal important roles of specific residues from the fingers domain in base-pairing and catalysis.
DNA Repair | 2017
Konstantin Yu. Kazachenko; Nataliya Miropolskaya; L. V. Gening; V. Z. Tarantul; Alena V. Makarova
Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg2+ or Mn2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established.
Biochemistry | 2011
E. V. Zhilina; Nataliya Miropolskaya; Irina Bass; K. L. Brodolin; Andrey Kulbachinskiy
The σ70 subunit of RNA polymerase (RNAP) is the major transcription initiation factor in Escherichia coli. During transcription initiation, conserved region 2 of the σ70 subunit interacts with the −10 promoter element and plays a key role in DNA melting around the starting point of transcription. During transcription elongation, the σ70 subunit can induce pauses in RNA synthesis owing to interactions of region 2 with DNA regions similar to the −10 promoter element. We demonstrated that the major σ subunit from Thermus aquaticus (σA) is also able to induce transcription pausing by T. aquaticus RNAP. However, hybrid RNAP containing the σA subunit and E. coli core RNAP is unable to form pauses during elongation, while being able to recognize promoters and initiate transcription. Inability of the σA subunit to induce pausing by E. coli RNAP is explained by the substitutions of non-conserved amino acids in region 2, in the subregions interacting with the RNAP core enzyme. Thus, changes in the structure of region 2 of the σ70 subunit have stronger effects on transcription pausing than on promoter recognition, likely by weakening the interactions of the σ subunit with the core RNAP during transcription elongation.
Biochemical and Biophysical Research Communications | 2018
Nataliya Miropolskaya; Andrey Feklistov; Vadim Nikiforov; Andrey Kulbachinskiy
Bacterial RNA polymerase (RNAP) is an RNA-synthesizing molecular machine and a target for antibiotics. In transcription, RNAP can interact with DNA sequence-specifically, during promoter recognition by the σ-containing holoenzyme, or nonspecifically, during productive RNA elongation by the core RNAP. We describe high-affinity single-stranded DNA aptamers that are specifically recognized by the core RNAP from Thermus aquaticus. The aptamers interact with distinct epitopes inside the RNAP main channel, including the rifamycin pocket, and sense the binding of other RNAP ligands such as rifamycin and the σA subunit. The aptamers inhibit RNAP activity and can thus be used for functional studies of transcription and development of novel RNAP inhibitors.
Scientific Reports | 2017
Nataliya Miropolskaya; Ivan Petushkov; Andrey Kulbachinskiy; Alena V. Makarova
Besides X-family DNA polymerases (first of all, Pol β) several other human DNA polymerases from Y- and A- families were shown to possess the dRP-lyase activity and could serve as backup polymerases in base excision repair (Pol ι, Rev1, Pol γ and Pol θ). However the exact position of the active sites and the amino acid residues involved in the dRP-lyase activity in Y- and A- family DNA polymerases are not known. Here we carried out functional analysis of fifteen amino acid residues possibly involved in the dRP-lyase activity of human Pol ι. We show that substitutions of residues Q59, K60 and K207 impair the dRP-lyase activity of Pol ι while residues in the HhH motif of the thumb domain are dispensable for this activity. While both K60G and K207A substitutions decrease Schiff-base intermediate formation during dRP group cleavage, the latter substitution also strongly affects the DNA polymerase activity of Pol ι, suggesting that it may impair DNA binding. These data are consistent with an important role of the N-terminal region in the dRP-lyase activity of Pol ι, with possible involvement of residues from the finger domain in the dRP group cleavage.