Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalja Timohhina is active.

Publication


Featured researches published by Natalja Timohhina.


Biochimica et Biophysica Acta | 2010

Structure–function relationships in feedback regulation of energy fluxes in vivo in health and disease: Mitochondrial Interactosome

Valdur Saks; Rita Guzun; Natalja Timohhina; Kersti Tepp; Minna Varikmaa; Claire Monge; Nathalie Beraud; Tuuli Kaambre; Andrey V. Kuznetsov; Lumme Kadaja; Margus Eimre; Enn Seppet

The aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells. In cardiomyocytes mitochondria are arranged very regularly, and show rapid configuration changes of inner membrane but no fusion or fission, diffusion of ADP and ATP is restricted mostly at the level of mitochondrial outer membrane due to an interaction of heterodimeric tubulin with voltage dependent anion channel, VDAC. VDAC with associated tubulin forms a supercomplex, Mitochondrial Interactosome, with mitochondrial creatine kinase, MtCK, which is structurally and functionally coupled to ATP synthasome. Due to selectively limited permeability of VDAC for adenine nucleotides, mitochondrial respiration rate depends almost linearly upon the changes of cytoplasmic ADP concentration in their physiological range. Functional coupling of MtCK with ATP synthasome amplifies this signal by recycling adenine nucleotides in mitochondria coupled to effective phosphocreatine synthesis. In cancerous HL-1 cells this complex is significantly modified: tubulin is replaced by hexokinase and MtCK is lacking, resulting in direct utilization of mitochondrial ATP for glycolytic lactate production and in this way contributing in the mechanism of the Warburg effect. Systemic analysis of changes in the integrated system of energy metabolism is also helpful for better understanding of pathogenesis of many other diseases.


Amino Acids | 2011

Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function

Rita Guzun; Natalja Timohhina; Kersti Tepp; Marcela Gonzalez-Granillo; Igor Shevchuk; Vladimir Chekulayev; Andrei V. Kuznetsov; Tuuli Kaambre; Valdur Saks

Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O2 ratio of about 5–6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank–Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure.


Acta Physiologica | 2015

Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation

Rita Guzun; Tuuli Kaambre; Rafaela Bagur; Alexei Grichine; Yves Usson; Minna Varikmaa; Tiia Anmann; Kersti Tepp; Natalja Timohhina; Igor Shevchuk; Vladimir Chekulayev; François Boucher; P.Dos Santos; Uwe Schlattner; Theo Wallimann; Andrey V. Kuznetsov; Petras P. Dzeja; Mayis Aliev; Valdur Saks

To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion‐pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure–function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis.


Biochimica et Biophysica Acta | 2011

High efficiency of energy flux controls within mitochondrial interactosome in cardiac intracellular energetic units.

Kersti Tepp; Igor Shevchuk; Vladimir Chekulayev; Natalja Timohhina; Andrey V. Kuznetsov; Rita Guzun; Valdur Saks; Tuuli Kaambre

The aim of our study was to analyze a distribution of metabolic flux controls of all mitochondrial complexes of ATP-Synthasome and mitochondrial creatine kinase (MtCK) in situ in permeabilized cardiac cells. For this we used their specific inhibitors to measure flux control coefficients (C(vi)(JATP)) in two different systems: A) direct stimulation of respiration by ADP and B) activation of respiration by coupled MtCK reaction in the presence of MgATP and creatine. In isolated mitochondria the C(vi)(JATP) were for system A: Complex I - 0.19, Complex III - 0.06, Complex IV 0.18, adenine nucleotide translocase (ANT) - 0.11, ATP synthase - 0.01, Pi carrier - 0.20, and the sum of C(vi)(JATP) was 0.75. In the presence of 10mM creatine (system B) the C(vi)(JATP) were 0.38 for ANT and 0.80 for MtCK. In the permeabilized cardiomyocytes inhibitors had to be added in much higher final concentration, and the following values of C(vi)(JATP) were determined for condition A and B, respectively: Complex I - 0.20 and 0.64, Complex III - 0.41 and 0.40, Complex IV - 0.40 and 0.49, ANT - 0.20 and 0.92, ATP synthase - 0.065 and 0.38, Pi carrier - 0.06 and 0.06, MtCK 0.95. The sum of C(vi)(JATP) was 1.33 and 3.84, respectively. Thus, C(vi)(JATP) were specifically increased under conditions B only for steps involved in ADP turnover and for Complex I in permeabilized cardiomyocytes within Mitochondrial Interactosome, a supercomplex consisting of MtCK, ATP-Synthasome, voltage dependent anion channel associated with tubulin βII which restricts permeability of the mitochondrial outer membrane.


Biochimica et Biophysica Acta | 2014

Role of mitochondria–cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles

Minna Varikmaa; Rafaela Bagur; Tuuli Kaambre; Alexei Grichine; Natalja Timohhina; Kersti Tepp; Igor Shevchuk; Vladimir Chekulayev; Madis Metsis; François Boucher; Valdur Saks; Andrey V. Kuznetsov; Rita Guzun

The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin βII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, βII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized βII tubulin. Very low expression of non-polymerized form of βII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP).


Biochimica et Biophysica Acta | 2014

Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart

Tiia Anmann; Minna Varikmaa; Natalja Timohhina; Kersti Tepp; Igor Shevchuk; Vladimir Chekulayev; Valdur Saks; Tuuli Kaambre

Adult cardiomyocytes have highly organized intracellular structure and energy metabolism whose formation during postnatal development is still largely unclear. Our previous results together with the data from the literature suggest that cytoskeletal proteins, particularly βII-tubulin, are involved in the formation of complexes between mitochondria and energy consumption sites. The aim of this study was to examine the arrangement of intracellular architecture parallel to the alterations in regulation of mitochondrial respiration in rat cardiomyocytes during postnatal development, from 1 day to 6 months. Respirometric measurements were performed to study the developmental alterations of mitochondrial function. Changes in the mitochondrial arrangement and cytoarchitecture of βII- and αIV-tubulin were examined by confocal microscopy. Our results show that functional maturation of oxidative phosphorylation in mitochondria is completed much earlier than efficient feedback regulation is established between mitochondria and ATPases via creatine kinase system. These changes are accompanied by significant remodeling of regular intermyofibrillar mitochondrial arrays aligned along the bundles of βII-tubulin. Additionally, we demonstrate that formation of regular arrangement of mitochondria is not sufficient per se to provide adult-like efficiency in metabolic feed-back regulation, but organized tubulin networks and reduction in mitochondrial outer membrane permeability for ADP are necessary as well. In conclusion, cardiomyocytes in rat heart become mature on the level of intracellular architecture and energy metabolism at the age of 3 months.


Journal of Bioenergetics and Biomembranes | 2014

Comparative analysis of some aspects of mitochondrial metabolism in differentiated and undifferentiated neuroblastoma cells

Aleksandr Klepinin; Vladimir Chekulayev; Natalja Timohhina; Igor Shevchuk; Kersti Tepp; Andrus Kaldma; Andre Koit; Valdur Saks; Tuuli Kaambre

The aim of the present study is to clarify some aspects of the mechanisms of regulation of mitochondrial metabolism in neuroblastoma (NB) cells. Experiments were performed on murine Neuro-2a (N2a) cell line, and the same cells differentiated by all-trans-retinoic acid (dN2a) served as in vitro model of normal neurons. Oxygraphy and Metabolic Control Analysis (MCA) were applied to characterize the function of mitochondrial oxidative phosphorylation (OXPHOS) in NB cells. Flux control coefficients (FCCs) for components of the OXPHOS system were determined using titration studies with specific non-competitive inhibitors in the presence of exogenously added ADP. Respiration rates of undifferentiated Neuro-2a cells (uN2a) and the FCC of Complex-II in these cells were found to be considerably lower than those in dN2a cells. Our results show that NB is not an exclusively glycolytic tumor and could produce a considerable part of ATP via OXPHOS. Two important enzymes - hexokinase-2 and adenylate kinase-2 can play a role in the generation of ATP in NB cells. MCA has shown that in uN2a cells the key sites in the regulation of OXPHOS are complexes I, II and IV, whereas in dN2a cells complexes II and IV. Results obtained for the phosphate and adenine nucleotide carriers showed that in dN2a cells these carriers exerted lower control over the OXPHOS than in undifferentiated cells. The sum of FCCs for both types of NB cells was found to exceed significantly that for normal cells suggesting that in these cells the respiratory chain was somehow reorganized or assembled into large supercomplexes.


Frontiers in Physiology | 2013

Metabolic control analysis of respiration in human cancer tissue

Tuuli Kaambre; Vladimir Chekulayev; Igor Shevchuk; Kersti Tepp; Natalja Timohhina; Minna Varikmaa; Rafaela Bagur; Aleksandr Klepinin; Tiia Anmann; Andre Koit; Andrus Kaldma; Rita Guzun; Vahur Valvere; Valdur Saks

Bioenergetic profiling of cancer cells is of great potential because it can bring forward new and effective therapeutic strategies along with early diagnosis. Metabolic Control Analysis (MCA) is a methodology that enables quantification of the flux control exerted by different enzymatic steps in a metabolic network thus assessing their contribution to the system‘s function. Our main goal is to demonstrate the applicability of MCA for in situ studies of energy metabolism in human breast and colorectal cancer cells as well as in normal tissues. We seek to determine the metabolic conditions leading to energy flux redirection in cancer cells. A main result obtained is that the adenine nucleotide translocator exhibits the highest control of respiration in human breast cancer thus becoming a prospective therapeutic target. Additionally, we present evidence suggesting the existence of mitochondrial respiratory supercomplexes that may represent a way by which cancer cells avoid apoptosis. The data obtained show that MCA applied in situ can be insightful in cancer cell energetic research.


The International Journal of Biochemistry & Cell Biology | 2014

An in situ study of bioenergetic properties of human colorectal cancer: The regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome

Andrus Kaldma; Aleksandr Klepinin; Vladimir Chekulayev; Kati Mado; Igor Shevchuk; Natalja Timohhina; Kersti Tepp; Manana Kandashvili; Minna Varikmaa; Andre Koit; Margus Planken; Karoliina Heck; Laura Truu; Anu Planken; Vahur Valvere; Egle Rebane; Tuuli Kaambre

The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used. Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis-Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60-80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides. The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase. Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed. Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.


Ageing Research Reviews | 2016

Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies

Kersti Tepp; Natalja Timohhina; Marju Puurand; Aleksandr Klepinin; Vladimir Chekulayev; Igor Shevchuk; Tuuli Kaambre

Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.

Collaboration


Dive into the Natalja Timohhina's collaboration.

Top Co-Authors

Avatar

Tuuli Kaambre

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Kersti Tepp

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Vladimir Chekulayev

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Igor Shevchuk

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Valdur Saks

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Aleksandr Klepinin

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Rita Guzun

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Andre Koit

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Vahur Valvere

Tallinn University of Technology

View shared research outputs
Top Co-Authors

Avatar

Minna Varikmaa

National Institute of Chemical Physics and Biophysics

View shared research outputs
Researchain Logo
Decentralizing Knowledge