Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalya Benderska is active.

Publication


Featured researches published by Natalya Benderska.


Nature Structural & Molecular Biology | 2011

Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1

Antoine Cléry; Sandrine Jayne; Natalya Benderska; Cyril Dominguez; Stefan Stamm; Frédéric H.-T. Allain

Tra2-β1 is a unique splicing factor as its single RNA recognition motif (RRM) is located between two RS (arginine-serine) domains. To understand how this protein recognizes its RNA target, we solved the structure of Tra2-β1 RRM in complex with RNA. The central 5′-AGAA-3′ motif is specifically recognized by residues from the β-sheet of the RRM and by residues from both extremities flanking the RRM. The structure suggests that RNA binding by Tra2-β1 induces positioning of the two RS domains relative to one another. By testing the effect of Tra2-β1 and RNA mutations on the splicing of SMN2 exon 7, we validated the importance of the RNA-protein contacts observed in the structure for the function of Tra2-β1 and determined the functional sequence of Tra2-β1 in SMN2 exon 7. Finally, we propose a model for the assembly of multiple RNA binding proteins on this exon.


Journal of Biological Chemistry | 2009

Heterogeneous Nuclear Ribonucleoprotein G Regulates Splice Site Selection by Binding to CC(A/C)-rich Regions in Pre-mRNA

Bettina Heinrich; Zhaiyi Zhang; Oleg Raitskin; Michael Hiller; Natalya Benderska; Annette M. Hartmann; Laurent Bracco; David J. Elliott; Shani Ben-Ari; Hermona Soreq; Joseph Sperling; Ruth Sperling; Stefan Stamm

Almost every protein-coding gene undergoes pre-mRNA splicing, and the majority of these pre-mRNAs are alternatively spliced. Alternative exon usage is regulated by the transient formation of protein complexes on the pre-mRNA that typically contain heterogeneous nuclear ribonucleoproteins (hnRNPs). Here we characterize hnRNP G, a member of the hnRNP class of proteins. We show that hnRNP G is a nuclear protein that is expressed in different concentrations in various tissues and that interacts with other splicing regulatory proteins. hnRNP G is part of the supraspliceosome, where it regulates alternative splice site selection in a concentration-dependent manner. Its action on alternative exons can occur without a functional RNA-recognition motif by binding to other splicing regulatory proteins. The RNA-recognition motif of hnRNP G binds to a loose consensus sequence containing a CC(A/C) motif, and hnRNP G preferentially regulates alternative exons where this motif is clustered in close proximity. The X-chromosomally encoded hnRNP G regulates different RNAs than its Y-chromosomal paralogue RNA-binding motif protein, Y-linked (RBMY), suggesting that differences in alternative splicing, evoked by the sex-specific expression of hnRNP G and RBMY, could contribute to molecular sex differences in mammals.


Molecular and Cellular Neuroscience | 2004

p59fyn-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1 ☆

Oliver Stoss; Tatyana Novoyatleva; Marieta Gencheva; Manuela Olbrich; Natalya Benderska; Stefan Stamm

The Sam68-like mammalian protein SLM-1 is a member of the STAR protein family and is related to SAM68 and SLM-2. Here, we demonstrate that rSLM-1 interacts with itself, scaffold-attachment factor B, YT521-B, SAM68, rSLM-2, SRp30c, and hnRNP G. rSLM-1 regulates splice site selection in vivo via a purine-rich enhancer. In contrast to the widely expressed SAM68 and rSLM-2 proteins, rSLM-1 is found primarily in brain and, to a much smaller degree, in testis. In the brain, rSLM-1 and rSLM-2 are predominantly expressed in different neurons. In the hippocampal formation, rSLM-1 is present only in the dentate gyrus, whereas rSLM-2 is found in the pyramidal cells of the CA1, CA3, and CA4 regions. rSLM-1, but not rSLM-2, is phosphorylated by p59(fyn). p59(fyn)-mediated phosphorylation abolishes the ability of rSLM-1 to regulate splice site selection, but has no effect on rSLM-2 activity. This suggests that rSLM-1-positive cells could respond with a change of their splicing pattern to p59(fyn) activation, whereas rSLM-2-positive cells would not be affected. Together, our data indicate that rSLM-1 is a tissue-specific splicing factor whose activity is regulated by tyrosine phosphorylation signals emanating from p59(fyn).


Inflammatory Bowel Diseases | 2015

miRNA-26b Overexpression in Ulcerative Colitis-associated Carcinogenesis.

Natalya Benderska; Anna-Lena Dittrich; Sabine Knaup; Tilman T. Rau; Clemens Neufert; Sven Wach; Fabian B. Fahlbusch; Manfred Rauh; Ralph M. Wirtz; Abbas Agaimy; Swetha Srinivasan; Vijayalakshmi Mahadevan; Petra Rümmele; Emmanouela Rapti; Maria Gazouli; Arndt Hartmann; Regine Schneider-Stock

Background:Longstanding ulcerative colitis (UC) bears a high risk for development of UC-associated colorectal carcinoma (UCC). The inflammatory microenvironment influences microRNA expression, which in turn deregulates target gene expression. microRNA-26b (miR-26b) was shown to be instrumental in normal tissue growth and differentiation. Thus, we aimed to investigate the impact of miR-26b in inflammation-associated colorectal carcinogenesis. Methods:Two different cohorts of patients were investigated. In the retrospective group, a tissue microarray with 38 samples from 17 UC/UCC patients was used for miR-26b in situ hybridization and quantitative reverse transcription polymerase chain reaction analyses. In the prospective group, we investigated miR-26b expression in 25 fresh–frozen colon biopsies and corresponding serum samples of 6 UC and 15 non-UC patients, respectively. In silico analysis, Ago2-RNA immunoprecipitation, luciferase reporter assay, quantitative reverse transcription polymerase chain reaction examination, and miR-26b mimic overexpression were employed for target validation. Results:miR-26b expression was shown to be upregulated with disease progression in tissues and serum of UC and UCC patients. Using miR-26b and Ki-67 expression levels, an UCC was predicted with high accuracy. We identified 4 novel miR-26b targets (DIP1, MDM2, CREBBP, BRCA1). Among them, the downregulation of the E3 ubiquitin ligase DIP1 was closely related to death-associated protein kinase stabilization along the normal mucosa-UC-UCC sequence. In silico functional pathway analysis revealed that the common cellular pathways affected by miR-26b are highly related to cancerogenesis and the development of gastrointestinal diseases. Conclusions:We suggest that miR-26b could serve as a biomarker for inflammation-associated processes in the gastrointestinal system. Because miR-26b expression is downregulated in sporadic colon cancer, it could discriminate between UCC and the sporadic cancer type.


American Journal of Pathology | 2013

Death-Associated Protein Kinase Controls STAT3 Activity in Intestinal Epithelial Cells

Saritha Chakilam; Muktheshwar Gandesiri; Tilman T. Rau; Abbas Agaimy; Mahadevan Vijayalakshmi; Jelena Ivanovska; Ralph M. Wirtz; Jan Schulze-Luehrmann; Natalya Benderska; Nadine Wittkopf; Ajithavalli Chellappan; Petra Ruemmele; Michael Vieth; Margret Rave-Fränk; Hans Christiansen; Arndt Hartmann; Clemens Neufert; Raja Atreya; Christoph Becker; Pablo Steinberg; Regine Schneider-Stock

The TNF-IL-6-STAT3 pathway plays a crucial role in promoting ulcerative colitis-associated carcinoma (UCC). To date, the negative regulation of STAT3 is poorly understood. Interestingly, intestinal epithelial cells of UCC in comparison to ulcerative colitis show high expression levels of anti-inflammatory death-associated protein kinase (DAPK) and low levels of pSTAT3. Accordingly, epithelial DAPK expression was enhanced in STAT3(IEC-KO) mice. To unravel a possible regulatory mechanism, we used an in vitro TNF-treated intestinal epithelial cell model. We identified a new function of DAPK in suppressing TNF-induced STAT3 activation as DAPK siRNA knockdown and treatment with a DAPK inhibitor potentiated STAT3 activation, IL-6 mRNA expression, and secretion. DAPK attenuated STAT3 activity directly by physical interaction shown in three-dimensional structural modeling. This model suggests that DAPK-induced conformational changes in the STAT3 dimer masked its nuclear localization signal. Alternatively, pharmacological inactivation of STAT3 led to an increase in DAPK mRNA and protein levels. Chromatin immunoprecipitation showed that STAT3 restricted DAPK expression by promoter binding, thereby reinforcing its own activation by inducing IL-6. This novel negative regulation principle might balance TNF-induced inflammation and seems to play an important role in the inflammation-associated transformation process as confirmed in an AOM+DSS colon carcinogenesis mouse model. DAPK as a negative regulator of STAT3 emerges as therapeutic option in the treatment of ulcerative colitis and UCC.


Apoptosis | 2014

Transcription control of DAPK

Natalya Benderska; Regine Schneider-Stock

Imbalanced cell death is a common phenomenon in many human diseases, including cancer. DAPK′s essential function is in promoting apoptosis. DAPK interacts with stress-induced receptors through its death domain to initiate an apoptosis cascade. In addition, DAPK phosphorylates multiple cytosolic substrates and can mediate transfer of signaling pathways to the effector caspases. A series of studies demonstrated that, depending on stimuli, DAPK expression is regulated on both the transcriptional and posttranscriptional levels. Silencing of DAPK due to hypermethylation of its promoter was reported in many types of cancer. STAT3 and p52-NFkB transcription factors have been shown to down-regulate DAPK expression. In contrast, p53, C/EBP-β and Smad transcription factors bind to their specific response elements within the DAPK promoter and induce its transcription. Post-transcriptionally, DAPK undergoes alternative splicing, which results in the production of two functionally different isoforms. Moreover, miRNA 103 and miRNA 107 recently were shown to inhibit DAPK in colorectal cancer. Here we summarize our recent knowledge about transcriptional regulation of DAPK expression.


The International Journal of Biochemistry & Cell Biology | 2013

Identification of DAPK as a scaffold protein for the LIMK/cofilin complex in TNF-induced apoptosis

Jelena Ivanovska; Alexandra Tregubova; Vijayalakshmi Mahadevan; Saritha Chakilam; Muktheshwar Gandesiri; Natalya Benderska; Benjamin Ettle; Arndt Hartmann; Stephan Söder; Elisabeth Ziesché; Thomas Fischer; Lena Lautscham; Ben Fabry; Gabriela Segerer; Antje Gohla; Regine Schneider-Stock

The role of cytoskeleton-associated proteins during TNF-induced apoptosis is not fully understood. A potential candidate kinase that might connect TNF signaling to actin reorganization is the death-associated protein kinase (DAPK). To identify new DAPK interaction partners in TNF-induced apoptosis, we performed a peptide array screen. We show that TNF-treatment enhanced the phosphorylation of LIMK at threonine508 and its downstream target cofilin at serine3 (p-cofilin(Ser3)). Modulation of DAPK activity and expression by DAPK inhibitor treatment, siRNA knockdown, and overexpression affected the phosphorylation of both proteins. We propose a 3D structural model where DAPK functions as a scaffold for the LIMK/cofilin complex and triggers a closer interaction of both proteins under TNF stimulation. Upon TNF a striking redistribution of LIMK, DAPK, and cofilin to the perinuclear compartment was observed. The pro-apoptotic DAPK/LIMK/cofilin multiprotein complex was abrogated in detached cells, indicating that its signaling was no longer needed if cells committed to apoptosis. P-cofilin(Ser3) was strongly accumulated in cells with condensed chromatin, pronounced membrane blebs and Annexin V up-regulation. From studying different cofilin(Ser3) mutants we suggest that p-cofilin(Ser3) is an indicator of TNF-induced apoptosis. Collectively, our findings identify a novel molecular cytoskeleton-associated mechanism in TNF-induced DAPK-dependent apoptosis.


Biochimica et Biophysica Acta | 2010

DARPP-32 binds to tra2-beta1 and influences alternative splicing.

Natalya Benderska; Kristina Becker; Jean-Antoine Girault; Cord-Michael Becker; Athena Andreadis; Stefan Stamm

The majority of human genes undergo alternative splicing, which is frequently altered in response to physiological stimuli. DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa) is a component of PKA-dependent signaling pathways. Here we show that DARPP-32 binds directly to the splicing factor tra2-beta1 (transformer 2). DARPP-32 changes the usage of tra2-beta1 dependent alternative exons in a concentration-dependent manner, suggesting that the DARPP-32:tra2-beta1 interaction is a molecular link between signaling pathways and pre-mRNA processing.


Journal of Cell Science | 2014

DAPK-HSF1 interaction as a positive-feedback mechanism stimulating TNF-induced apoptosis in colorectal cancer cells.

Natalya Benderska; Jelena Ivanovska; Tilman T. Rau; Jan Schulze-Luehrmann; S Suma Mohan; Saritha Chakilam; Muktheshwar Gandesiri; Elisabeth Ziesché; Thomas Fischer; Stephan Söder; Abbas Agaimy; Luitpold Distel; Heinrich Sticht; Vijayalakshmi Mahadevan; Regine Schneider-Stock

ABSTRACT Death-associated protein kinase (DAPK) is a serine-threonine kinase with tumor suppressor function. Previously, we demonstrated that tumor necrosis factor (TNF) induced DAPK-mediated apoptosis in colorectal cancer. However, the protein–protein interaction network associated with TNF–DAPK signaling still remains unclear. We identified HSF1 as a new DAPK phosphorylation target in response to low concentrations of TNF and verified a physical interaction between DAPK and HSF1 both in vitro and in vivo. We show that HSF1 binds to the DAPK promoter. Transient overexpression of HSF1 protein led to an increase in DAPK mRNA level and consequently to an increase in the amount of apoptosis. By contrast, treatment with a DAPK-specific inhibitor as well as DAPK knockdown abolished the phosphorylation of HSF1 at Ser230 (pHSF1Ser230). Furthermore, translational studies demonstrated a positive correlation between DAPK and pHSF1Ser230 protein expression in human colorectal carcinoma tissues. Taken together, our data define a novel link between DAPK and HSF1 and highlight a positive-feedback loop in DAPK regulation under mild inflammatory stress conditions in colorectal tumors. For the first time, we show that under TNF the pro-survival HSF1 protein can be redirected to a pro-apoptotic program.


Journal of Biological Chemistry | 2012

A Retroelement Modifies Pre-mRNA Splicing THE MURINE Glrbspa ALLELE IS A SPLICING SIGNAL POLYMORPHISM AMPLIFIED BY LONG INTERSPERSED NUCLEAR ELEMENT INSERTION

Kristina Becker; Marlen Braune; Natalya Benderska; Emanuele Buratti; Francisco E. Baralle; Carmen Villmann; Stefan Stamm; Volker Eulenburg; Cord-Michael Becker

Background: The mouse mutant spastic carries a retrotransposon insertion in the Glrb gene leading to missplicing. Results: Glrb missplicing in the spastic allele results from an exonic SNP amplified by retrotransposon insertion. Conclusion: The consequences of retrotransposon insertions depend on the properties of the element and on its genomic environment. Significance: SNPs without transcriptional relevance might contribute to disease phenotypes after additional gene alteration. The glycine receptor-deficient mutant mouse spastic carries a full-length long interspersed nuclear element (LINE1) retrotransposon in intron 6 of the glycine receptor β subunit gene, Glrbspa. The mutation arose in the C57BL/6J strain and is associated with skipping of exon 6 or a combination of the exons 5 and 6, thus resulting in a translational frameshift within the coding regions of the GlyR β subunit. The effect of the Glrbspa LINE1 insertion on pre-mRNA splicing was studied using a minigene approach. Sequence comparison as well as motif prediction and mutational analysis revealed that in addition to the LINE1 insertion the inactivation of an exonic splicing enhancer (ESE) within exon 6 is required for skipping of exon 6. Reconstitution of the ESE by substitution of a single residue was sufficient to prevent exon skipping. In addition to the ESE, two regions within the 5′ and 3′ UTR of the LINE1 were shown to be critical determinants for exon skipping, indicating that LINE1 acts as efficient modifier of subtle endogenous splicing phenotypes. Thus, the spastic allele of the murine glycine receptor β subunit gene is a two-hit mutation, where the hypomorphic alteration in an ESE is amplified by the insertion of a LINE1 element in the adjacent intron. Conversely, the LINE1 effect on splicing may be modulated by individual polymorphisms, depending on the insertional environment within the host genome.

Collaboration


Dive into the Natalya Benderska's collaboration.

Top Co-Authors

Avatar

Regine Schneider-Stock

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jelena Ivanovska

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Saritha Chakilam

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Arndt Hartmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Muktheshwar Gandesiri

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Abbas Agaimy

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Tatyana Novoyatleva

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge