Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalya Degtyareva is active.

Publication


Featured researches published by Natalya Degtyareva.


PLOS ONE | 2013

Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions.

Rossella Marullo; Erica Werner; Natalya Degtyareva; Bryn S. Moore; Giuseppe Altavilla; Suresh S. Ramalingam; Paul W. Doetsch

Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy.


Molecular and Cellular Biology | 1995

Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes.

Hiep T. Tran; Natalya Degtyareva; N N Koloteva; Akio Sugino; Hiroshi Masumoto; Dmitry A. Gordenin; Michael A. Resnick

Small direct repeats, which are frequent in all genomes, are a potential source of genome instability. To study the occurrence and genetic control of repeat-associated deletions, we developed a system in the yeast Saccharomyces cerevisiae that was based on small direct repeats separated by either random sequences or inverted repeats. Deletions were examined in the LYS2 gene, using a set of 31- to 156-bp inserts that included inserts with no apparent potential for secondary structure as well as two quasipalindromes. All inserts were flanked by 6- to 9-bp direct repeats of LYS2 sequence, providing an opportunity for Lys+ reversion via precise excision. Reversions could arise by extended deletions involving either direct repeats or random sequences and by -1-or +2-bp frameshift mutations. The deletion breakpoints were always associated with short (3- to 9-bp) perfect or imperfect direct repeats. Compared with the POL+ strain, deletions between small direct repeats were increased as much as 100-fold, and the spectrum was changed in a temperature-sensitive DNA polymerase delta pol3-t mutant, suggesting a role for replication. The type of deletion depended on orientation relative to the origin of replication. On the basis of these results, we propose (i) that extended deletions between small repeats arise by replication slippage and (ii) that the deletions occur primarily in either the leading or lagging strand. The RAD50 and RAD52 genes, which are required for the recombinational repair of many kinds of DNA double-strand breaks, appeared to be required also for the production of up to 90% of the deletions arising between separated repeats in the pol3-t mutant, suggesting a newly identified role for these genes in genome stability and possibly replication.


Free Radical Biology and Medicine | 2008

DNA Damage-induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces cerevisiae

Lori A. Rowe; Natalya Degtyareva; Paul W. Doetsch

Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA-alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways.


Molecular and Cellular Biology | 1997

Altered replication and inverted repeats induce mismatch repair-independent recombination between highly diverged DNAs in yeast.

Hiep T. Tran; Natalya Degtyareva; Dmitry A. Gordenin; Michael A. Resnick

Replication, DNA organization, and mismatch repair (MMR) can influence recombination. We examined the effects of altered replication due to a mutation in the polymerase delta gene, long inverted repeats (LIRs) in motifs similar to those in higher eukaryotes, and MMR on intrachromosomal recombination between highly diverged (28%) truncated genes in Saccharomyces cerevisiae. A combination of altered replication and an LIR increased recombination up to 700-fold, while each alone led to a 3- to 20-fold increase. Homeologous recombination was not altered by pms1, msh2, and msh3 mismatch repair mutations. Similar to our previous observations for replication slippage-mediated deletions, there were > or = 5-bp identical runs at the recombination breakpoints. We propose that the dramatic increase in recombination results from enhancement of the effects of altered replication by the LIR, leading to recombinationally active initiating structures. Such interactions predict replication-related, MMR-independent genome changes.


Molecular and Cellular Biology | 2008

Chronic Oxidative DNA Damage Due to DNA Repair Defects Causes Chromosomal Instability in Saccharomyces cerevisiae

Natalya Degtyareva; Lingling Chen; Piotr A. Mieczkowski; Thomas D. Petes; Paul W. Doetsch

ABSTRACT Oxidative DNA damage is likely to be involved in the etiology of cancer and is thought to accelerate tumorigenesis via increased mutation rates. However, the majority of malignant cells acquire a specific type of genomic instability characterized by large-scale genomic rearrangements, referred to as chromosomal instability (CIN). The molecular mechanisms underlying CIN are not entirely understood. We utilized Saccharomyces cerevisiae as a model system to delineate the relationship between genotoxic stress and CIN. It was found that elevated levels of chronic, unrepaired oxidative DNA damage caused chromosomal aberrations at remarkably high frequencies under both selective and nonselective growth conditions. In this system, exceeding the cellular capacity to appropriately manage oxidative DNA damage resulted in a “gain-of-CIN” phenotype and led to profound karyotypic instability. These results illustrate a novel mechanism for genome destabilization that is likely to be relevant to human carcinogenesis.


Nucleic Acids Research | 2010

Regulation of base excision repair: Ntg1 nuclear and mitochondrial dynamic localization in response to genotoxic stress

Dan B. Swartzlander; Lyra M. Griffiths; Joan Lee; Natalya Degtyareva; Paul W. Doetsch; Anita H. Corbett

Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae BER protein, Ntg1, relocalizes to organelles containing elevated oxidative DNA damage, indicating a novel mechanism of regulation for BER. We propose that dynamic localization of BER proteins is modulated by constituents of stress response pathways. In an effort to mechanistically define these regulatory components, the elements necessary for nuclear and mitochondrial localization of Ntg1 were identified, including a bipartite classical nuclear localization signal, a mitochondrial matrix targeting sequence and the classical nuclear protein import machinery. Our results define a major regulatory system for BER which when compromised, confers a mutator phenotype and sensitizes cells to the cytotoxic effects of DNA damage.


Nucleic Acids Research | 2013

Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines

Natalya Degtyareva; Lanier Heyburn; Joan F. Sterling; Michael A. Resnick; Dmitry A. Gordenin; Paul W. Doetsch

Localized hyper-mutability caused by accumulation of lesions in persistent single-stranded (ss) DNA has been recently found in several types of cancers. An increase in endogenous levels of reactive oxygen species (ROS) is considered to be one of the hallmarks of cancers. Employing a yeast model system, we addressed the role of oxidative stress as a potential source of hyper-mutability in ssDNA by modulation of the endogenous ROS levels and by exposing cells to oxidative DNA-damaging agents. We report here that under oxidative stress conditions the majority of base substitution mutations in ssDNA are caused by erroneous, DNA polymerase (Pol) zeta-independent bypass of cytosines, resulting in C to T transitions. For all other DNA bases Pol zeta is essential for ROS-induced mutagenesis. The density of ROS-induced mutations in ssDNA is lower, compared to that caused by UV and MMS, which suggests that ssDNA could be actively protected from oxidative damage. These findings have important implications for understanding mechanisms of oxidative mutagenesis, and could be applied to development of anticancer therapies and cancer prevention.


Mechanisms of Ageing and Development | 2012

Yap1: a DNA damage responder in Saccharomyces cerevisiae.

Lori A. Rowe; Natalya Degtyareva; Paul W. Doetsch

Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents.


Journal of Biological Chemistry | 2013

A network of interdependent molecular interactions describes a higher order Nrd1-Nab3 complex involved in yeast transcription termination.

Travis J. Loya; Thomas W. O'Rourke; Natalya Degtyareva; Daniel Reines

Background: How the yeast proteins Nrd1 and Nab3 provoke transcription termination is poorly understood. Results: An essential part of Nab3 contains a self-assembly domain that appears unstructured. Nrd1/Nab3 double mutants disrupt the function of this higher order complex, causing lethality. Conclusion: A large network of molecular interactions is needed for termination. Significance: A new essential function of Nab3 has been identified. Nab3 and Nrd1 are yeast heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins that heterodimerize and bind RNA. Genetic and biochemical evidence reveals that they are integral to the termination of transcription of short non-coding RNAs by RNA polymerase II. Here we define a Nab3 mutation (nab3Δ134) that removes an essential part of the proteins C terminus but nevertheless can rescue, in trans, the phenotype resulting from a mutation in the RNA recognition motif of Nab3. This low complexity region of Nab3 appears intrinsically unstructured and can form a hydrogel in vitro. These data support a model in which multiple Nrd1-Nab3 heterodimers polymerize onto substrate RNA to effect termination, allowing complementation of one mutant Nab3 molecule by another lacking a different function. The self-association property of Nab3 adds to the previously documented interactions between these hnRNP-like proteins, RNA polymerase II, and the nascent transcript, leading to a network of nucleoprotein interactions that define a higher order Nrd1-Nab3 complex. This was underscored from the synthetic phenotypes of yeast strains with pairwise combinations of Nrd1 and Nab3 mutations known to affect their distinct biochemical activities. The mutations included a Nab3 self-association defect, a Nab3-Nrd1 heterodimerization defect, a Nrd1-polymerase II binding defect, and an Nab3-RNA recognition motif mutation. Although no single mutation was lethal, cells with any two mutations were not viable for four such pairings, and a fifth displayed a synthetic growth defect. These data strengthen the idea that a multiplicity of interactions is needed to assemble a higher order Nrd1-Nab3 complex that coats specific nascent RNAs in preparation for termination.


PLOS Genetics | 2015

Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in Escherichia coli

Jordan Morreall; Alice Kim; Yuan Liu; Natalya Degtyareva; Bernard Weiss; Paul W. Doetsch

Adaptive mutation refers to the continuous outgrowth of new mutants from a non-dividing cell population during selection, in apparent violation of the neo-Darwinian principle that mutation precedes selection. One explanation is that of retromutagenesis, in which a DNA lesion causes a transcriptional mutation that yields a mutant protein, allowing escape from selection. This enables a round of DNA replication that establishes heritability. Because the model requires that gene expression precedes DNA replication, it predicts that during selection, new mutants will arise from damage only to the transcribed DNA strand. As a test, we used a lacZ amber mutant of Escherichia coli that can revert by nitrous acid-induced deamination of adenine residues on either strand of the TAG stop codon, each causing different DNA mutations. When stationary-phase, mutagenized cells were grown in rich broth before being plated on lactose-selective media, only non-transcribed strand mutations appeared in the revertants. This result was consistent with the known high sensitivity to deamination of the single-stranded DNA in a transcription bubble, and it provided an important control because it demonstrated that the genetic system we would use to detect transcribed-strand mutations could also detect a bias toward the non-transcribed strand. When residual lacZ transcription was blocked beforehand by catabolite repression, both strands were mutated about equally, but if revertants were selected immediately after nitrous acid exposure, transcribed-strand mutations predominated among the revertants, implicating retromutagenesis as the mechanism. This result was not affected by gene orientation. Retromutagenesis is apt to be a universal method of evolutionary adaptation, which enables the emergence of new mutants from mutations acquired during counterselection rather than beforehand, and it may have roles in processes as diverse as the development of antibiotic resistance and neoplasia.

Collaboration


Dive into the Natalya Degtyareva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry A. Gordenin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael A. Resnick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiep T. Tran

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Conley

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge