Nataša Debeljak
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nataša Debeljak.
Archives of Biochemistry and Biophysics | 2003
Nataša Debeljak; Martina Fink; Damjana Rozman
Lanosterol 14alpha-demethylase is a cytochrome P450 enzyme of the cholesterol biosynthetic pathway belonging to the CYP51 gene family which is the most evolutionarily conserved member of the CYP superfamily. Mammalian (human, mouse, rat, pig) CYP51 genes are unique in sharing several common characteristics: highly conserved exon/intron borders and proximal promoter structures, ubiquitous expression at the highest level in the testis, and appearance of testis-specific transcripts that arise from differential polyadenylation site usage. CYP51 protein demethylates lanosterol to form follicular fluid meiosis-activating sterol, FF-MAS, which is, besides being an intermediate of cholesterol biosynthesis, also a signaling sterol that accumulates in ovaries. CYP51 protein resides in the endoplasmatic reticulum of most cells and also in acrosomal membranes of spermatids where transport through the Golgi apparatus is suggested. While sterol regulatory element binding protein (SREBP)-dependent transcriptional regulation of CYP51 contributes to synthesis of cholesterol, the germ-cell-specific cAMP/CREMtau-dependent upregulation might contribute to increased production of MAS.
Journal of Biological Chemistry | 2011
Rok Keber; Helena Motaln; Kay D. Wagner; Nataša Debeljak; Minoo Rassoulzadegan; Jure Acimovic; Damjana Rozman; Simon Horvat
Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumulation of lanosterol and 24,25-dihydrolanosterol has been reported, but the role of CYP51A1 in the ABS etiology has remained obscure. To test whether Cyp51 could be involved in generating an ABS-like phenotype, a mouse knock-out model was developed that exhibited several prenatal ABS-like features leading to lethality at embryonic day 15. Cyp51−/− mice had no functional Cyp51 mRNA and no immunodetectable CYP51 protein. The two CYP51 enzyme substrates (lanosterol and 24,25-dihydrolanosterol) were markedly accumulated. Cholesterol precursors downstream of the CYP51 enzymatic step were not detected, indicating that the targeting in this study blocked de novo cholesterol synthesis. This was reflected in the up-regulation of 10 cholesterol synthesis genes, with the exception of 7-dehydrocholesterol reductase. Lethality was ascribed to heart failure due to hypoplasia, ventricle septum, and epicardial and vasculogenesis defects, suggesting that Cyp51 deficiency was involved in heart development and coronary vessel formation. As the most likely downstream molecular mechanisms, alterations were identified in the sonic hedgehog and retinoic acid signaling pathways. Cyp51 knock-out mice provide evidence that Cyp51 is essential for embryogenesis and present a potential animal model for studying ABS syndrome in humans.
Journal of Molecular Evolution | 2004
Tadeja Režen; Nataša Debeljak; Dušan Kordiš; Damjana Rozman
Abstract.Sterol 14α-demethylase (CYP51) is a member of the cytochrome P450 superfamily, widely found in animals, fungi, and plants but present in few prokaryotic groups. CYP51 is currently believed to be the ancestral cytochrome P450 that has been transferred from prokaryotes to eukaryotic kingdoms. We propose an alternate view of CYP51 evolution that has an impact on understanding the evolution of the entire CYP superfamily. Two hundred forty-nine bacterial and four archaeal CYP sequences have been aligned and a bacterial CYP tree designed, showing a separation of two branches. Prokaryotic CYP51s cluster to the minor branch, together with other eukaryote-like CYPs. Mycobacterial and methylococcal CYP51s cluster together (100% bootstrap probability), while Streptomyces CYP51 remains on a distant branch. A CYP51 phylogenetic tree has been constructed from 44 sequences resulting in a ((plant, bacteria),(animal, fungi)) topology (100% bootstrap probability). This is in accordance with the lanosterol/cycloartenol diversification of sterol biosynthesis. The lanosterol branch (nonphotosynthetic lineage) follows the previously proposed topology of animal and fungal orthologues (100% bootstrap probability), while plant and D. discoideum CYP51s belong to the cycloartenol branch (photosynthetic lineage), all in accordance with biochemical data. Bacterial CYP51s cluster within the cycloartenol branch (69% bootstrap probability), which is indicative of a lateral gene transfer of a plant CYP51 to the methylococcal/mycobacterial progenitor, suggesting further that bacterial CYP51s are not the oldest CYP genes. Lateral gene transfer is likely far more important than hitherto thought in the development of the diversified CYP superfamily. Consequently, bacterial CYPs may represent a mixture of genes with prokaryotic and eukaryotic origin.
Frontiers in Immunology | 2014
Nataša Debeljak; Peter Solár; Arthur J. Sytkowski
Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients.
Chemico-Biological Interactions | 2011
Neli Hevir; Nina Trošt; Nataša Debeljak; T. Lanišnik Rižner
Prolonged exposure to estrogens is a significant risk factor for the development of breast cancer. Estrogens exert carcinogenic effects by stimulating cell proliferation or through oxidative metabolism that forms DNA-damaging species. In the present study, we aimed to provide a better understanding of estrogen metabolism and actions in breast cancer, and to characterize model breast cancer cell lines. We determined the expression profiles of the genes for the estrogen and progesterone receptors, and for 18 estrogen-metabolizing enzymes in eight cell lines: MCF-7, MCF-10A, T47D, SKBR3, MDA-MB-231, MDA-MB-361, Hs-578T and Hs-578Bst cells. Similar gene expression profiles of these receptors and enzymes for the formation of estradiol via the aromatase and sulfatase pathways were observed in the MCF-7 and T47D metastatic cell lines. The MDA-MB-361 cells expressed ESR1, ESR2 and PGR as well, but differed in expression of the estrogen-metabolizing enzymes. In the MDA-MB-231 and SKBR3 cells, all of these estrogen-forming enzymes were expressed, although the lack of ESR1 and the low levels of ESR2 expression suggested that the estrogens can only act via non-ER mediated pathways. In the non-tumorigenic MCF-10A cell line, the key enzymes of the aromatase pathway were not expressed, and the sulfatase pathway also had a marginal role. The comparison between gene expression profiles of the non-tumorigenic Hs-578Bst cells and the cancerous Hs-578T cells revealed that they can both form estrogens via the sulfatase pathway, while the aromatase pathway is less important in the Hs-578Bst cells. The Hs-578T cells showed low levels of ESR1, ESR2 and PGR expression, while only ESR1 and ESR2 expression was detected in the Hs-578Bst cells. Our data show that the cell lines examined provide the full range of model systems and should further be compared with the expression profiles of breast cancer specimens.
Drug Testing and Analysis | 2012
Nataša Debeljak; Arthur J. Sytkowski
Erythropoietin (EPO) is the main hormonal regulator of red blood cell production. Recombinant EPO has become the leading drug for treatment of anaemia from a variety of causes; however, it is sometimes misused in sport with the aim of improving performance and endurance. This paper presents an introductory overview of EPO, its receptor, and a variety of recombinant human EPOs/erythropoiesis stimulating agents (ESAs) available on the market (e.g. epoetins and their long acting analogs--darbepoetin alfa and continuous erythropoiesis receptor activator). Recent efforts to improve on EPOs pharmaceutical properties and to develop novel replacement products are also presented. In most cases, these efforts have emphasized a reduction in frequency of injections or complete elimination of intravenous or subcutaneous injections of the hormone (biosimilars, EPO mimetic peptides, fusion proteins, endogenous EPO gene activators and gene doping). Isoelectric focusing (IEF) combined with double immunoblotting can detect the subtle differences in glycosylation/sialylation, enabling differentiation among endogenous and recombinant EPO analogues. This method, using the highly sensitive anti-EPO monoclonal antibody AE7A5, has been accepted internationally as one of the methods for detecting misuse of ESAs in sport.
Radiology and Oncology | 2012
Nina Trošt; Peter Juvan; Gregor Sersa; Nataša Debeljak
Contrasting effect of recombinant human erythropoietin on breast cancer cell response to cisplatin induced cytotoxicity Background. Human recombinant erythropoietin (rHuEpo) that is used for the treatment of the chemotherapy-induced anaemia in cancer patients was shown to cause detrimental effects on the course of disease due to increased adverse events inflicting patients survival, potentially related to rHuEpo-induced cancer progression. In this study, we elucidate the effect of rHuEpo administration on breast cancer cell proliferation and gene expression after cisplatin (cDDP) induced cytotoxicity. Materials and methods. Two breast carcinoma models, MCF-7 and MDA-MB-231 cell lines, were used differing in oestrogen (ER) and progesterone (PR) receptors and p53 status. Cells were cultured with or without rHuEpo for 24 h or 9 weeks and their growth characteristics after cDDP treatment were assessed together with expression of genes involved in the p53-signaling pathway. Results. Short-term exposure of breast cancer cells to rHuEpo lowers their proliferation and reduces cDDP cytotoxic potency. In contrast, long-term exposure of MCF-7 cells to rHuEpo increases proliferation and predisposes MCF-7 cells to cDDP cytotoxicity, but has no effect on MDA-MB-231 cells. MDA-MB-231 cells show altered level of ERK phosphorylation, indicating involvement of MAPK signalling pathway. Gene expression analysis of p53-dependent genes and bcl-2 gene family members confirmed differences between long and short-term rHuEpo effects, indicating the most prominent changes in BCL2 and BAD expression. Conclusions. Proliferation and survival characteristics of MCF-7 cells are reversely modulated by the length of the rHuEpo exposure. On the other hand, MDA-MB-231 cells are almost irresponsive to long-term rHuEpo, supposedly due to the mutated p53 and ER(+)/PR(-) status. The p53 and ER/PR status may predict tumour response on rHuEpo and cDDP treatment.
Radiology and Oncology | 2013
Nina Trošt; Tina Stepišnik; Sabina Berne; Anja Pucer; Toni Petan; Radovan Komel; Nataša Debeljak
Abstract Background. Functional erythropoietin (EPO) signaling is not specific only to erythroid lineages and has been confirmed in several solid tumors, including breast. Three different isoforms of erythropoietin receptor (EPOR) have been reported, the soluble (EPOR-S) and truncated (EPOR-T) forms acting antagonistically to the functional EPOR. In this study, we investigated the effect of human recombinant erythropoietin (rHuEPO) on cell proliferation, early gene response and the expression of EPOR isoforms in the MCF-7 breast cancer cell line. Materials and methods. The MCF-7 cells were cultured with or without rHuEPO for 72 h or 10 weeks and assessed for their growth characteristics, expression of early response genes and different EPOR isoforms. The expression profile of EPOR and EPOR-T was determined in a range of breast cancer cell lines and compared with their invasive properties. Results. MCF-7 cell proliferation after rHuEPO treatment was dependent on the time of treatment and the concentration used. High rHuEPO concentrations (40 U/ml) stimulated cell proliferation independently of a preceding long-term exposure of MCF-7 cells to rHuEPO, while lower concentrations increased MCF-7 proliferation only after 10 weeks of treatment. Gene expression analysis showed activation of EGR1 and FOS, confirming the functionality of EPOR. rHuEPO treatment also slightly increased the expression of the functional EPOR isoform, which, however, persisted throughout the 10 weeks of treatment. The expression levels of EPOR-T were not influenced. There were no correlations between EPOR expression and the invasiveness of MCF-7, MDA-MB-231, Hs578T, Hs578Bst, SKBR3, T-47D and MCF-10A cell lines. Conclusions. rHuEPO modulates MCF-7 cell proliferation in time- and concentration-dependent manner. We confirmed EGR1, FOS and EPOR as transcription targets of the EPO-EPOR signaling loop, but could not correlate the expression of different EPOR isoforms with the invasiveness of breast cancer cell lines.
International Journal of Molecular Sciences | 2017
Patrícia Kimáková; Peter Solár; Zuzana Solárová; Radovan Komel; Nataša Debeljak
Erythropoietin (EPO) is the main hematopoietic hormone acting on progenitor red blood cells via stimulation of cell growth, differentiation, and anti-apoptosis. However, its receptor (EPOR) is also expressed in various non-hematopoietic tissues, including endothelium. EPO is a pleiotropic growth factor that exhibits growth stimulation and cell/tissue protection on numerous cells and tissues. In this article we review the angiogenesis potential of EPO on endothelial cells in heart, brain, and leg ischemia, as well as its role in retinopathy protection and tumor promotion. Furthermore, the effect of EPO on bone marrow and adipose tissue is also discussed.
Central European Journal of Chemistry | 2013
Klemen Španinger; Arthur J. Sytkowski; Nataša Debeljak
The quantitative real-time polymerase chain reaction (qPCR) is a sensitive technique for examining the influence of erythropoietin (Epo) on gene expression. A critical and fundamental step for data analysis is the selection of and normalization to the optimal reference gene(s). We identified appropriate reference gene(s) among 32 genes during chronic recombinant human Epo (rHuEpo) treatment of SH-SY5Y cells using TaqMan human Express Endogenous Control Plate. Expression stability of the selected reference gene (RPLP) was retested with qPCR, together with two commonly used reference genes (GAPDH, ACTB) and six genes of interest (EPOR, EPO, STAT5B, STAT5A, JUN, AKT). In PC12 cells, three commonly used reference genes (Gapdh, CycA and Ywhaz) and seven genes of interest (EpoR, Epo, Stat5b, Stat5a, Jun, Akt, Fos) were evaluated. For the evaluation of expression stability, geNorm, NormFinder and BestKeeper software were used. All three gave similar results. We demonstrated that among the housekeeping genes, RPLP in SH-SY5Y and CycA and Ywhaz in PC12 are the most stable genes. Additionally, we showed that normalization with GAPDH gave misleading results compared to normalization with geNorm. In conclusion, selection of the appropriate normalization gene(s) is crucial for correct interpretation of rHuEpo treatment results.Graphical abstract