Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasa Zamurovic is active.

Publication


Featured researches published by Natasa Zamurovic.


Journal of Biological Chemistry | 2004

Coordinated Activation of Notch, Wnt, and Transforming Growth Factor-β Signaling Pathways in Bone Morphogenic Protein 2-induced Osteogenesis Notch TARGET GENE Hey1 INHIBITS MINERALIZATION AND Runx2 TRANSCRIPTIONAL ACTIVITY

Natasa Zamurovic; David Cappellen; Daisy Rohner; Mira Šuša

To examine early events in osteoblast differentiation, we analyzed the expression of about 9,400 genes in the murine MC3T3 cell line, whose robust differentiation was documented cytochemically and molecularly. The cells were stimulated for 1 and 3 days with the osteogenic stimulus containing bone morphogenic protein 2. Total RNA was extracted and analyzed by Affymetrix GeneChip oligonucleotide arrays. A regulated expression of 394 known genes and 295 expressed sequence tags was detected. The sensitivity and reliability of detection by microarrays was shown by confirming the expression pattern for 20 genes by radioactive quantitative reverse transcription-PCR. Functional classification of regulated genes was performed, defining the groups of regulated growth factors, receptors, and transcription factors. The most interesting finding was concomitant activation of transforming growth factor-β, Wnt, and Notch signaling pathways, confirmed by strong up-regulation of their target genes by PCR. The transforming growth factor-β pathway is activated by stimulated production of the growth factor itself, while the exact mechanism of Wnt and Notch activation remains elusive. We showed that bone morphogenic protein 2 stimulated expression of Hey1, a direct Notch target gene, in mouse MC3T3 and C2C12 cells, in human mesenchymal cells, and in mouse calvaria. Small interfering RNA-mediated inhibition of Hey1 induction led to an increase in osteoblast matrix mineralization, suggesting that Hey1 is a negative regulator of osteoblast maturation. This negative regulation is apparently achieved via interaction with Runx2: Hey1 completely abrogated Runx2 transcriptional activity. These findings identify the Notch-Hey1 pathway as a negative regulator of osteoblast differentiation/maturation, which is a completely novel aspect of osteogenesis and could point to possible new targets for bone anabolic agents.


Journal of Translational Medicine | 2004

Human primary osteoclasts: in vitro generation and applications as pharmacological and clinical assay

Mira Šuša; Ngoc-Hong Luong-Nguyen; David Cappellen; Natasa Zamurovic; Rainer Gamse

Osteoclasts are cells of hematopoietic origin with a unique property of dissolving bone; their inhibition is a principle for treatment of diseases of bone loss. Protocols for generation of human osteoclasts in vitro have been described, but they often result in cells of low activity, raising questions on cell phenotype and suitability of such assays for screening of bone resorption inhibitors. Here we describe an optimized protocol for the production of stable amounts of highly active human osteoclasts. Mononuclear cells were isolated from human peripheral blood by density centrifugation, seeded at 600,000 cells per 96-well and cultured for 17 days in α-MEM medium, supplemented with 10% of selected fetal calf serum, 1 μM dexamethasone and a mix of macrophage-colony stimulating factor (M-CSF, 25 ng/ml), receptor activator of NFκB ligand (RANKL, 50 ng/ml), and transforming growth factor-β1 (TGF-β1, 5 ng/ml). Thus, in addition to widely recognized osteoclast-generating factors M-CSF and RANKL, other medium supplements and lengthy culture times were necessary. This assay reliably detected inhibition of osteoclast formation (multinucleated cells positive for tartrate-resistant acid phosphatase) and activity (resorbed area and collagen fragments released from bone slices) in dose response curves with several classes of bone resorption inhibitors. Therefore, this assay can be applied for monitoring bone-resorbing activity of novel drugs and as an clinical test for determining the capacity of blood cells to generate bone-resorbing osteoclasts. Isolation of large quantities of active human osteoclast mRNA and protein is also made possible by this assay.


PLOS ONE | 2011

Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

Harri Lempiäinen; Arne Müller; Sarah Brasa; Soon-Siong Teo; Tim-Christoph Roloff; Laurent Morawiec; Natasa Zamurovic; Axel Vicart; Enrico Funhoff; Philippe Couttet; Dirk Schübeler; Olivier Grenet; Jennifer Marlowe; Jonathan G. Moggs; Rémi Terranova

Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.


Toxicological Sciences | 2013

Identification of Dlk1-Dio3 imprinted gene cluster noncoding RNAs as novel candidate biomarkers for liver tumor promotion.

Harri Lempiäinen; Philippe Couttet; Federico Bolognani; Arne Müller; Valerie Dubost; Raphaëlle Luisier; Alberto del Rio-Espinola; Veronique Vitry; Elif B. Unterberger; John P. Thomson; Fridolin Treindl; Ute Metzger; Clemens Wrzodek; Florian Hahne; Tulipan Zollinger; Sarah Brasa; Magdalena Kalteis; M. Marcellin; Fanny Giudicelli; Albert Braeuning; Laurent Morawiec; Natasa Zamurovic; Ulrich Längle; Nico Scheer; Dirk Schübeler; Jay I. Goodman; Salah-Dine Chibout; Jennifer Marlowe; Diethilde Theil; David J. Heard

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for β-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and β-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Bone | 2010

Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone

Rishard Salie; Michaela Kneissel; Mirko Vukevic; Natasa Zamurovic; Ina Kramer; Glenda Evans; Nicole Gerwin; Matthias Mueller; Bernd Kinzel; Mira Šuša

The transcription factor Hey1, a known Notch target gene of the HES family, has recently been described as a target gene of bone morphogenetic protein-2 (BMP-2) during osteoblastic differentiation in vitro. As the role of Hey1 in skeletal physiology is unknown, we analyzed bones of mice ubiquitously lacking or overexpressing Hey1. This strategy enabled us to evaluate whether Hey1 modulation in the whole organism could serve as a drug or antibody target for therapy of diseases associated with bone loss. Hey1 deficiency resulted in modest osteopenia in vivo and increased number and activity of osteoclasts generated ex vivo. Hey1 overexpression resulted in distinct progressive osteopenia and inhibition of osteoblasts ex vivo, an effect apparently dominant to a mild inhibition of osteoclasts. In both Hey1 deficient and overexpressing mice, males were less affected than females and skeleton was not affected during development. Bone histomorphometry did not reveal major changes in animals at 20 weeks, suggesting that modulation had occurred before. Adult Hey1 transgenics also displayed increased type X collagen expression and an enlarged hypertrophic zone in the growth plate. Taken together, our data suggest that ubiquitous in vivo Hey1 regulation affects osteoblasts, osteoclasts and chondrocytes. Due to the complex role of Hey1 in bone, inhibition of Hey1 does not appear to be a straightforward therapeutic strategy to increase the bone mass.


Journal of Immunology | 2015

Deficiency of MALT1 Paracaspase Activity Results in Unbalanced Regulatory and Effector T and B Cell Responses Leading to Multiorgan Inflammation

Frédéric Bornancin; Florian Renner; Ratiba Touil; Heiko Sic; Yeter Kolb; Ismahane Touil-Allaoui; James Rush; Paul Smith; Marc Bigaud; Ursula Junker-Walker; Christoph Burkhart; Janet Dawson; Satoru Niwa; Andreas Katopodis; Barbara Nuesslein-Hildesheim; Gisbert Weckbecker; Gerhard Zenke; Bernd Kinzel; Elisabetta Traggiai; Dirk Brenner; Anne Brüstle; Michael St. Paul; Natasa Zamurovic; Kathleen McCoy; Antonius Rolink; Catherine H. Regnier; Tak W. Mak; Pamela S. Ohashi; Dhavalkumar D. Patel; Thomas Calzascia

The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1PD/PD) and compared their phenotype with that of MALT1 knockout animals (Malt1−/−). Malt1PD/PD mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10–producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1−/− animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1PD/PD mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1PD/PD animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1PD/PD animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.


Scientific Reports | 2016

Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice

Derya R. Shimshek; Laura H. Jacobson; Carine Kolly; Natasa Zamurovic; Kamal Kumar Balavenkatraman; Laurent Morawiec; Robert Kreutzer; Juliane Schelle; Mathias Jucker; Barbara Bertschi; Diethilde Theil; Annabelle Heier; Karine Bigot; Karen Beltz; Rainer Machauer; Irena Brzak; Ludovic Perrot; Ulf Neumann

Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The β-secretase (BACE1) is responsible for the generation of amyloid-β (Aβ) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer’s disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-β peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2+/− and bace2−/− mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice.


Archive | 2004

Coordinated Activation of Notch, Wnt, and Transforming Growth Factor- Signaling Pathways in Bone Morphogenic Protein 2-induced Osteogenesis

Inhibits Mineralization; Natasa Zamurovic; David Cappellen; Daisy Rohner; Mira Šuša


Archive | 2004

GENE EXPRESSION ASSOCIATED WITH OSTEOBLAST DIFFERENTIATION

Spring Mira Susa; Natasa Zamurovic


Toxicology Letters | 2012

Identification of off-target binding proteins to elucidate mechanism of drug toxicity

Rico Funhoff; Natasa Zamurovic; Axel Vicart; Laure Christina Bouchez; Hans Voshol; Bertran Gerrits; Gregory Guillemain; Laurent Morawiec; Jean-Philippe Gasser

Collaboration


Dive into the Natasa Zamurovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Schübeler

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge