Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasha E. Zachara is active.

Publication


Featured researches published by Natasha E. Zachara.


Molecular and Cellular Biology | 2004

Ogt-Dependent X-Chromosome-Linked Protein Glycosylation Is a Requisite Modification in Somatic Cell Function and Embryo Viability

Niall O'Donnell; Natasha E. Zachara; Gerald W. Hart; Jamey D. Marth

ABSTRACT The Ogt gene encodes a glycosyltransferase that links N-acetylglucosamine to serine and threonine residues (O-GlcNAc) on nuclear and cytosolic proteins. Efforts to study a mammalian model of Ogt deficiency have been hindered by the requirement for this X-linked gene in embryonic stem cell viability, necessitating the use of conditional mutagenesis in vivo. We have extended these observations by segregating Ogt mutation to distinct somatic cell types, including neurons, thymocytes, and fibroblasts, the latter by an approach developed for inducible Ogt mutagenesis. We show that Ogt mutation results in the loss of O-GlcNAc and causes T-cell apoptosis, neuronal tau hyperphosphorylation, and fibroblast growth arrest with altered expression of c-Fos, c-Jun, c-Myc, Sp1, and p27. We further segregated the mutant Ogt allele to parental gametes by oocyte- and spermatid-specific Cre-loxP mutagenesis. By this we established an in vivo genetic approach that supports the ontogeny of female heterozygotes bearing mutant X-linked genes required during embryogenesis. Successful production and characterization of such female heterozygotes further indicates that mammalian cells commonly require a functional Ogt allele. We find that O-GlcNAc modulates protein phosphorylation and expression among essential and conserved cell signaling pathways.


Circulation | 2008

Cardioprotection by N-Acetylglucosamine Linkage to Cellular Proteins

Steven P. Jones; Natasha E. Zachara; Gladys A. Ngoh; Bradford G. Hill; Yasushi Teshima; Aruni Bhatnagar; Gerald W. Hart; Eduardo Marbán

Background— The modification of proteins with O-linked &bgr;-N-acetylglucosamine (O-GlcNAc) represents a key posttranslational modification that modulates cellular function. Previous data suggest that O-GlcNAc may act as an intracellular metabolic or stress sensor, linking glucose metabolism to cellular function. Considering this, we hypothesized that augmentation of O-GlcNAc levels represents an endogenously recruitable mechanism of cardioprotection. Methods and Results— In mouse hearts subjected to in vivo ischemic preconditioning, O-GlcNAc levels were significantly elevated. Pharmacological augmentation of O-GlcNAc levels in vivo was sufficient to reduce myocardial infarct size. We investigated the influence of O-GlcNAc levels on cardiac injury at the cellular level. Lethal oxidant stress of cardiac myocytes produced a time-dependent loss of cellular O-GlcNAc levels. This pathological response was largely reversible by pharmacological augmentation of O-GlcNAc levels and was associated with improved cardiac myocyte survival. The diminution of O-GlcNAc levels occurred synchronously with the loss of mitochondrial membrane potential in isolated cardiac myocytes. Pharmacological enhancement of O-GlcNAc levels attenuated the loss of mitochondrial membrane potential. Proteomic analysis identified voltage-dependent anion channel as a potential target of O-GlcNAc modification. Mitochondria isolated from adult mouse hearts with elevated O-GlcNAc levels had more O-GlcNAc–modified voltage-dependent anion channel and were more resistant to calcium-induced swelling than cardiac mitochondria from vehicle mice. Conclusions— O-GlcNAc signaling represents a unique endogenously recruitable mechanism of cardioprotection that may involve direct modification of mitochondrial proteins critical for survival such as voltage-dependent anion channel.


Journal of Biological Chemistry | 1999

High Density O-Glycosylation on Tandem Repeat Peptide from Secretory MUC1 of T47D Breast Cancer Cells

Stefan Müller; Kim Alving; Jasna Peter-Katalinić; Natasha E. Zachara; Andrew A. Gooley; Franz-Georg Hanisch

The site-specificO-glycosylation of MUC1 tandem repeat peptides from secretory mucin of T47D breast cancer cells was analyzed. After affinity isolation on immobilized BC3 antibody, MUC1 was partially deglycosylated by enzymatic treatment with α-sialidase/β-galactosidase and fragmented by proteolytic cleavage with the Arg-C-specific endopeptidase clostripain. The PAP20 glycopeptides were isolated by reversed phase high pressure liquid chromatography and subjected to the structural analyses by quadrupole time-of-flight electrospray ionization mass spectrometry and to the sequencing by Edman degradation. All five positions of the repeat peptide were revealed as O-glycosylation targets in the tumor cell, including the Thr within the DTR motif. The degree of substitution was estimated to average 4.8 glycans per repeat, which compares to 2.6 glycosylated sites per repeat for the mucin from milk (Müller, S., Goletz, S., Packer, N., Gooley, A. A., Lawson, A. M., and Hanisch, F.-G. (1997) J. Biol. Chem.272, 24780–24793). In addition to a modification by glycosylation, the immunodominant DTR motif on T47D-MUC1 is altered by amino acid replacements (PAPGSTAPAAHGVTSAPESR), which were revealed in about 50% of PAP20 peptides. The high incidence of these replacements and their detection also in other cancer cell lines imply that the conserved tandem repeat domain of MUC1 is polymorphic with respect to the peptide sequence.


Nature Chemical Biology | 2012

Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis

Mary Katherine Tarrant; Hee Sool Rho; Zhi Xie; Yu Lin Jiang; Christopher Gross; Jeffrey C. Culhane; Gai Yan; Jiang Qian; Yoshitaka Ichikawa; Tatsuji Matsuoka; Natasha E. Zachara; Felicia A. Etzkorn; Gerald W. Hart; Jun Seop Jeong; Seth Blackshaw; Heng Zhu; Philip A. Cole

Protein Ser/Thr kinase CK2 (casein kinase II) is involved in a myriad of cellular processes including cell growth and proliferation by phosphorylating hundreds of substrates, yet the regulation process of CK2 function is poorly understood. Here we report that the CK2 catalytic subunit CK2α is modified by O-GlcNAc on Ser347, proximal to a cyclin-dependent kinase phosphorylation site (Thr344) on the same protein. We use protein semisynthesis to show that Thr344 phosphorylation increases CK2α cellular stability via Pin1 interaction whereas Ser347 glycosylation appears to be antagonistic to Thr344 phosphorylation and permissive to proteasomal degradation. By performing kinase assays with the site-specifically modified phospho- and glyco-modified CK2α in combination with CK2β and Pin1 binding partners on human protein microarrays, we show that CK2 kinase substrate selectivity is modulated by these specific posttranslational modifications. This study suggests how a promiscuous protein kinase can be regulated at multiple levels to achieve particular biological outputs.


Journal of Biological Chemistry | 2010

O-Linked β-N-acetylglucosamine (O-GlcNAc) Regulates Stress-induced Heat Shock Protein Expression in a GSK-3β-dependent Manner

Zahra Kazemi; Hana Chang; Sarah Haserodt; Cathrine McKen; Natasha E. Zachara

To investigate the mechanisms by which O-linked β-N-acetylglucosamine modification of nucleocytoplasmic proteins (O-GlcNAc) confers stress tolerance to multiple forms of cellular injury, we explored the role(s) of O-GlcNAc in the regulation of heat shock protein (HSP) expression. Using a cell line in which deletion of the O-GlcNAc transferase (OGT; the enzyme that adds O-GlcNAc) can be induced by 4-hydroxytamoxifen, we screened the expression of 84 HSPs using quantitative reverse transcriptase PCR. In OGT null cells the stress-induced expression of 18 molecular chaperones, including HSP72, were reduced. GSK-3β promotes apoptosis through numerous pathways, including phosphorylation of heat shock factor 1 (HSF1) at Ser303 (Ser(P)303 HSF1), which inactivates HSF1 and inhibits HSP expression. In OGT null cells we observed increased Ser(P)303 HSF1; conversely, in cells in which O-GlcNAc levels had been elevated, reduced Ser(P)303 HSF1 was detected. These data, combined with those showing that inhibition of GSK-3β in OGT null cells recovers HSP72 expression, suggests that O-GlcNAc regulates the activity of GSK-3β. In OGT null cells, stress-induced inactivation of GSK-3β by phosphorylation at Ser9 was ablated providing a molecular basis for these findings. Together, these data suggest that stress-induced GlcNAcylation increases HSP expression through inhibition of GSK-3β.


Circulation Research | 2008

Unique Hexosaminidase Reduces Metabolic Survival Signal and Sensitizes Cardiac Myocytes to Hypoxia/Reoxygenation Injury

Gladys A. Ngoh; Heberty T. Facundo; Tariq Hamid; Wolfgang H. Dillmann; Natasha E. Zachara; Steven P. Jones

Metabolic signaling through the posttranslational linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents a unique signaling paradigm operative during lethal cellular stress and a pathway that we and others have recently shown to exert cytoprotective effects in vitro and in vivo. Accordingly, the present work addresses the contribution of the hexosaminidase responsible for removing O-GlcNAc (ie, O-GlcNAcase) from proteins. We used pharmacological inhibition, viral overexpression, and RNA interference of O-GlcNAcase in isolated cardiac myocytes to establish its role during acute hypoxia/reoxygenation. Elevated O-GlcNAcase expression significantly reduced O-GlcNAc levels and augmented posthypoxic cell death. Conversely, short interfering RNA directed against, or pharmacological inhibition of, O-GlcNAcase significantly augmented O-GlcNAc levels and reduced posthypoxic cell death. On the mechanistic front, we evaluated posthypoxic mitochondrial membrane potential and found that repression of O-GlcNAcase activity improves, whereas augmentation impairs, mitochondrial membrane potential recovery. Similar beneficial effects on posthypoxic calcium overload were also evident. Such changes were evident without significant alteration in expression of the major putative components of the mitochondrial permeability transition pore (ie, voltage-dependent anion channel, adenine nucleotide translocase, cyclophilin D). The present results provide definitive evidence that O-GlcNAcase antagonizes posthypoxic cardiac myocyte survival. Moreover, such results support a renewed approach to the contribution of metabolism and metabolic signaling to the determination of cell fate.


Current protocols in protein science | 2001

Detection and Analysis of Proteins Modified by O‐Linked N‐Acetylglucosamine

Natasha E. Zachara; Keith Vosseller; Gerald W. Hart

O‐GlcNAc is a common post‐translational modification of nuclear, mitochondrial, and cytoplasmic proteins that is implicated in the etiology of type II diabetes and Alzheimers disease, as well as cardioprotection. This unit covers simple and comprehensive techniques for identifying proteins modified by O‐GlcNAc, studying the enzymes that add and remove O‐GlcNAc, and mapping O‐GlcNAc modification sites. Curr. Protoc. Mol. Biol. 95:17.6.1‐17.6.33.


Amino Acids | 2011

The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways

Natasha E. Zachara; Henrik Molina; Ker Yi Wong; Akhilesh Pandey; Gerald W. Hart

The modification of nuclear, mitochondrial, and cytoplasmic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic and essential post-translational modification of metazoans. Numerous forms of cellular injury lead to elevated levels of O-GlcNAc in both in vivo and in vitro models, and elevation of O-GlcNAc levels before, or immediately after, the induction of cellular injury is protective in models of heat stress, oxidative stress, endoplasmic reticulum (ER) stress, hypoxia, ischemia reperfusion injury, and trauma hemorrhage. Together, these data suggest that O-GlcNAc is a regulator of the cellular stress response. However, the molecular mechanism(s) by which O-GlcNAc regulates protein function leading to enhanced cell survival have not been identified. In order to determine how O-GlcNAc modulates stress tolerance in these models we have used stable isotope labeling with amino acids in cell culture to determine the identity of proteins that undergo O-GlcNAcylation in response to heat shock. Numerous proteins with diverse functions were identified, including NF-90, RuvB-like 1 (Tip49α), RuvB-like 2 (Tip49β), and several COPII vesicle transport proteins. Many of these proteins bind double-stranded DNA-dependent protein kinase (PK), or double-stranded DNA breaks, suggesting a role for O-GlcNAc in regulating DNA damage signaling or repair. Supporting this hypothesis, we have shown that DNA-PK is O-GlcNAc modified in response to numerous forms of cellular stress.


Cell Stress & Chaperones | 2013

Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis

Jennifer Groves; Albert Lee; Gokben Yildirir; Natasha E. Zachara

O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer’s and Parkinson’s diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.


American Journal of Physiology-heart and Circulatory Physiology | 2012

The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease.

Natasha E. Zachara

More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.

Collaboration


Dive into the Natasha E. Zachara's collaboration.

Top Co-Authors

Avatar

Gerald W. Hart

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jennifer Groves

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Robert N. Cole

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Albert Lee

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Phuoc T. Tran

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kekoa Taparra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Roger Henry

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Akhilesh Pandey

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brian W. Simons

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge