Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasha H. Rhys is active.

Publication


Featured researches published by Natasha H. Rhys.


Journal of Physical Chemistry B | 2012

The hydrogen-bonding ability of the amino acid glutamine revealed by neutron diffraction experiments.

Natasha H. Rhys; Alan Soper; Lorna Dougan

Hydrogen bonding between glutamine residues has been identified as playing an important role in the intermolecular association and aggregation of proteins. To establish the molecular mechanisms of glutamine interactions, neutron diffraction coupled with hydrogen/deuterium isotopic substitution in combination with computational modeling has been used to investigate the structure and hydration of glutamine in aqueous solution. The final structures obtained are consistent with the experimental data and provide insight into the hydrogen-bonding ability of glutamine. We find that the backbone of glutamine is able to coordinate more water molecules than the side chain, suggesting that charged groups on the glutamine molecule are more successful in attracting water than the dipole in the side chain. In both the backbone and the side chain, we find that the carbonyl groups interact more readily with water molecules than the amine groups. We find that glutamine-glutamine interactions are present, despite their low concentration in this dilute solution. This is evidenced through the occurrence of dimers of glutamine molecules in the solution, demonstrating the effective propensity of this molecule to associate through backbone-backbone, backbone-side chain, and side chain-side chain hydrogen bond interactions. The formation of dimers of glutamine molecules in such a dilute solution (30 mg/mL glutamine) may have implications in the aggregation of glutamine-rich proteins in neurological diseases where aggregation is prevalent.


Journal of Physical Chemistry B | 2015

Hydrophilic Association in a Dilute Glutamine Solution Persists Independent of Increasing Temperature

Natasha H. Rhys; Alan K. Soper; Lorna Dougan

Recent studies suggest that hydrophilic interactions play an important role in controlling self-assembly in biological processes. To explore the effect of temperature on this interaction, we extend our previous work on the glutamine-water system at 24 °C (at a mole ratio of 1 glutamine to 269 water molecules) and present additional neutron diffraction data, at the same concentration, at 37 and 60 °C, using hydrogen/deuterium substitution on the water and glutamine, coupled with further extensive empirical potential structure refinement computer simulations. Taking all the possible hydrophilic couplings between glutamine molecules into account, we find that nearly one-fifth of the glutamines in solution are linked by hydrogen bonds at any one time. This number contrasts strongly with the ∼3-4% fraction found in the same simulation with random packing and no hydrogen bonds. Within the uncertainties imposed by dilute solution statistics, we find no temperature dependence in these values. The clusters are highly transitory, forming and disappearing rapidly as the simulations proceed. Hydrophobic association of the alkyl groups on glutamine without concomitant hydrophilic association of the charged head and side-chain groups is only weakly observed.


Soft Matter | 2013

The emerging role of hydrogen bond interactions in polyglutamine structure, stability and association

Natasha H. Rhys; Lorna Dougan

Polyglutamine regions in proteins have been associated with protein aggregation and the development of serious neurodegenerative diseases. Using a bottom-up approach, the molecular properties of glutamine and single polyglutamine chains can be understood, providing a promising route to uncover the mechanisms of polyglutamine-related protein aggregation. In this article we highlight recent advances in the study of both glutamine and polyglutamine using novel biophysical tools. A recurring theme in these studies is the importance of hydrogen bonding in driving glutamine association.


Journal of Physical Chemistry B | 2017

Glucose and Mannose: A Link between Hydration and Sweetness

Natasha H. Rhys; Fabio Bruni; Silvia Imberti; Sylvia E. McLain; Maria Antonietta Ricci

Glucose and mannose have a different degree of sweetness, implying different affinity to the sweet taste receptor. While the receptor structure is still undefined, there are several geometrical models for their binding mechanism. A detailed study of the hydration structure of sugars with known degree of sweetness is bound to provide information on the accuracy of such models. Our neutron diffraction study on the hydration of glucose and mannose show that both α- and β-glucose form strong hydrogen bonds with water, and that the steric hindrance of their first hydration shell matches the receptor geometrical model. The α-anomer of mannose has a similar, well-defined first hydration shell, but with fewer and weaker hydrogen bonds compared to glucose. Conversely, the hydration shell of β-mannose (reported as bitter) does not match the receptor geometrical model. These findings suggest a link between the hydration shell of sugars and their degree of sweetness.


Journal of Chemical Physics | 2016

On the structure of an aqueous propylene glycol solution.

Natasha H. Rhys; Richard J. Gillams; Louise Collins; Samantha K. Callear; Margaret Lawrence; Sylvia E. McLain

Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.


Nature Communications | 2017

Highly compressed water structure observed in a perchlorate aqueous solution

Samuel Lenton; Natasha H. Rhys; James J. Towey; Alan Soper; Lorna Dougan

The discovery by the Phoenix Lander of calcium and magnesium perchlorates in Martian soil samples has fueled much speculation that flows of perchlorate brines might be the cause of the observed channeling and weathering in the surface. Here, we study the structure of a mimetic of Martian water, magnesium perchlorate aqueous solution at its eutectic composition, using neutron diffraction in combination with hydrogen isotope labeling and empirical potential structure refinement. We find that the tetrahedral structure of water is heavily perturbed, the effect being equivalent to pressurizing pure water to pressures of order 2 GPa or more. The Mg2+ and ClO4− ions appear charge-ordered, confining the water on length scales of order 9 Å, preventing ice formation at low temperature. This may explain the low evaporation rates and high deliquescence of these salt solutions, which are essential for stability within the low relative humidity environment of the Martian atmosphere.Significant amounts of different perchlorate salts have been discovered on the surface of Mars. Here, the authors show that magnesium perchlorate has a major impact on water structure in solution, providing insight into how an aqueous fluid might exist under the sub-freezing conditions present on Mars.


Journal of Physical Chemistry B | 2018

Trehalose in Water Revisited

Alan K. Soper; Maria Antonietta Ricci; Fabio Bruni; Natasha H. Rhys; Sylvia E. McLain

Trehalose, commonly found in living organisms, is believed to help them survive severe environmental conditions, such as drought or extreme temperatures. With the aim of trying to understand these properties, two recent neutron scattering studies investigate the structure of trehalose water solutions but come to seemingly opposite conclusions. In the first study, which looks at two concentrations of trehalose-water mole ratios of 1:100 and 1:25, the conclusion is that trehalose hydrogen-bonds to water rather weakly and has a relatively minor impact on the structure of water in solution compared to bulk water. On the other hand, for the other, using a mole ratio of 1:38, the conclusion is that the water structure is rather substantially modified by the presence of trehalose and that the hydrogen bonding between water and trehalose hydroxyl groups is significant. In an attempt to try to understand the origin of these divergent views, which arise from similar but independent analyses of different neutron diffraction data, we have performed additional X-ray scattering experiments, which are highly sensitive to water structure, at the same trehalose-water concentrations used in the first study, and combined these with empirical potential structure refinement on the previously collected neutron data. The new analysis unequivocally confirms that trehalose does indeed have only a minor impact on the structure of water, at all three concentrations, and forms relatively weak hydrogen bonds with water. Far from being discrepant with the existing literature, our new analysis of the different datasets suggests a natural explanation for the increased glass-transition temperature of trehalose compared to other sugars and hence its enhanced effectiveness as a protectant against drought stress.


Journal of Physical Chemistry B | 2018

Temperature-Dependent Segregation in Alcohol–Water Binary Mixtures Is Driven by Water Clustering

Samuel Lenton; Natasha H. Rhys; James J. Towey; Alan K. Soper; Lorna Dougan

Previous neutron scattering work, combined with computer simulated structure analysis, has established that binary mixtures of methanol and water partially segregate into water-rich and alcohol-rich components. It has furthermore been noted that, between methanol mole fractions of 0.27 and 0.54, both components, water and methanol, simultaneously form percolating clusters. This partial segregation is enhanced with decreasing temperature. The mole fraction of 0.27 also corresponds to the point of maximum excess entropy for ethanol-water mixtures. Here, we study the degree of molecular segregation in aqueous ethanol solutions at a mole fraction of 0.27 and compare it with that in methanol-water solutions at the same concentration. Structural information is extracted for these solutions using neutron diffraction coupled with empirical potential structure refinement. We show that ethanol, like methanol, bi-percolates at this concentration and that, in a similar manner to methanol, alcohol segregation, as measured by the proximity of neighboring methyl sidechains, is increased upon cooling the solution. Water clustering is found to be significantly enhanced in both alcohol solutions compared to the water clustering that occurs for random, hard sphere-like, mixing with no hydrogen bonds between molecules. Alcohol clustering via the hydrophobic groups is, on the other hand, only slightly sensitive to the water hydrogen bond network. These results support the idea that it is the water clustering that drives the partial segregation of the two components, and hence the observed excess entropy of mixing.


Journal of Chemical Physics | 2018

On the solvation of the phosphocholine headgroup in an aqueous propylene glycol solution

Natasha H. Rhys; Mohamed Ali Al-Badri; Robert M. Ziolek; Richard J. Gillams; Louise Collins; M. Jayne Lawrence; Christian D. Lorenz; Sylvia E. McLain

The atomic-scale structure of the phosphocholine (PC) headgroup in 30 mol. % propylene glycol (PG) in an aqueous solution has been investigated using a combination of neutron diffraction with isotopic substitution experiments and computer simulation techniques-molecular dynamics and empirical potential structure refinement. Here, the hydration of the PC headgroup remains largely intact compared with the hydration of this group in a bilayer and in a bulk water solution, with the PG molecules showing limited interactions with the headgroup. When direct PG interactions with PC do occur, they are most likely to coordinate to the N(CH3)3+ motifs. Further, PG does not affect the bulk water structure and the addition of PC does not perturb the PG-solvent interactions. This suggests that the reason why PG is able to penetrate into membranes easily is that it does not form strong-hydrogen bonding or electrostatic interactions with the headgroup allowing it to easily move across the membrane barrier.


Physical Chemistry Chemical Physics | 2016

Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations

Samuel Lenton; Danielle L. Walsh; Natasha H. Rhys; Alan K. Soper; Lorna Dougan

Collaboration


Dive into the Natasha H. Rhys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan K. Soper

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge