Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natasha N. Kumar is active.

Publication


Featured researches published by Natasha N. Kumar.


Science | 2015

Regulation of breathing by CO2 requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons

Natasha N. Kumar; Ana Velic; Jorge Soliz; Yingtang Shi; Keyong Li; Sheng Wang; Janelle L. Weaver; Josh Sen; Stephen B. G. Abbott; Roman M. Lazarenko; Marie-Gabrielle Ludwig; Edward Perez-Reyes; Nilufar Mohebbi; Carla Bettoni; Max Gassmann; Thomas Suply; Klaus Seuwen; Patrice G. Guyenet; Carsten A. Wagner; Douglas A. Bayliss

Receptor in the brain controls breathing Control of breathing in mammals depends primarily not on sensing oxygen, but rather on detecting concentrations of carbon dioxide in the blood. Failure of this system can cause potentially deadly sleep apnias. Taking a hint from insects, which use a heterotrimeric guanine nucleotide–binding protein-coupled receptor (GPCR) to sense carbon dioxide, Kumar et al. demonstrate that the GPCR GPR4 is essential to control breathing in mice. GPR4 senses protons generated by the formation of carbonic acid in the blood and works with a pH-sensitive potassium channel called TASK-2 in a set of brain cells that control breathing. Science, this issue p. 1255 A G protein–coupled receptor in the brain controls respiration. Blood gas and tissue pH regulation depend on the ability of the brain to sense CO2 and/or H+ and alter breathing appropriately, a homeostatic process called central respiratory chemosensitivity. We show that selective expression of the proton-activated receptor GPR4 in chemosensory neurons of the mouse retrotrapezoid nucleus (RTN) is required for CO2-stimulated breathing. Genetic deletion of GPR4 disrupted acidosis-dependent activation of RTN neurons, increased apnea frequency, and blunted ventilatory responses to CO2. Reintroduction of GPR4 into RTN neurons restored CO2-dependent RTN neuronal activation and rescued the ventilatory phenotype. Additional elimination of TASK-2 (K2P5), a pH-sensitive K+ channel expressed in RTN neurons, essentially abolished the ventilatory response to CO2. The data identify GPR4 and TASK-2 as distinct, parallel, and essential central mediators of respiratory chemosensitivity.


The Journal of Neuroscience | 2013

TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons

Sheng Wang; Najate Benamer; Sébastien Zanella; Natasha N. Kumar; Yingtang Shi; Michelle Bévengut; David Penton; Patrice G. Guyenet; Florian Lesage; Christian Gestreau; Douglas A. Bayliss

Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H+ via an unidentified pH-sensitive background K+ channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K+ channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2−/− mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2−/− mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K+ currents were reduced in amplitude in RTN neurons from TASK-2−/− mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart–brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2−/− mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold.


Circulation Research | 2007

Central Command Regulation of Circulatory Function Mediated by Descending Pontine Cholinergic Inputs to Sympathoexcitatory Rostral Ventrolateral Medulla Neurons

James R. Padley; Natasha N. Kumar; Qun Li; Thomas B.V. Nguyen; Paul M. Pilowsky; Ann K. Goodchild

Central command is a feedforward neural mechanism that evokes parallel modifications of motor and cardiovascular function during arousal and exercise. The neural circuitry involved has not been elucidated. We have identified a cholinergic neural circuit that, when activated, mimics effects on tonic and reflex control of circulation similar to those evoked at the onset of and during exercise. Central muscarinic cholinergic receptor (mAChR) activation increased splanchnic sympathetic nerve activity (SNA) as well as the range and gain of the sympathetic baroreflex via activation of mAChR in the rostral ventrolateral medulla (RVLM) in anesthetized artificially ventilated Sprague-Dawley rats. RVLM mAChR activation also attenuated and inhibited the peripheral chemoreflex and somatosympathetic reflex, respectively. Cholinergic terminals made close appositions with a subpopulation of sympathoexcitatory RVLM neurons containing either preproenkephalin mRNA or tyrosine hydroxylase immunoreactivity. M2 and M3 receptor mRNA was present postsynaptically in only non-tyrosine hydroxylase neurons. Cholinergic inputs to the RVLM arise only from the pedunculopontine tegmental nucleus. Chemical activation of this region produced increases in muscle activity, SNA, and blood pressure and enhanced the SNA baroreflex; the latter effect was attenuated by mAChR blockade. These findings indicate a novel role for cholinergic input from the pedunculopontine tegmental nucleus to the RVLM in central cardiovascular command. This pathway is likely to be important during exercise where a centrally evoked facilitation of baroreflex control of the circulation is required to maintain blood flow to active muscle.


Journal of Psychopharmacology | 2013

Catecholamine receptors differentially mediate impulsive choice in the medial prefrontal and orbitofrontal cortex

Margery C. Pardey; Natasha N. Kumar; Ann K. Goodchild; Jennifer L. Cornish

Impulsivity is characteristic of several mental health disorders and is largely mediated by the prefrontal cortex subregions: the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC). Dopamine (DA) and norepinephrine (NE) are known to modulate activity of the prefrontal cortex, however their direct role in impulsive choice is not known. The aim of the present study was to investigate the effect of microinjecting DA or NE compounds in the mPFC or OFC on impulsive choice as measured by a delayed reinforcement (DR) task in male Wistar Kyoto rats. Following training in the DR task, rats were pretreated with DA D1 and D2 receptor antagonists (SCH23390 3 μg/side, raclopride 3 or 6 μg/side) or NE α1 and α2 receptor agonists (phenylephrine 0.1 or 0.3 μg/side, guanfacine 1 or 3 μg/side, respectively) into the mPFC or OFC and the effect on impulsive behavior was assessed. Pretreatment with raclopride into the mPFC or OFC significantly increased impulsive choice, however only pretreatment with SCH23390 into the mPFC, and not the OFC, significantly increased impulsive choice. Pretreatment with the NE receptor agonists had no effect on impulsive choice. This study suggests that DA receptors, but not NE receptors, differentially mediate impulsive choice in sub-regions of the prefrontal cortex.


The Journal of Comparative Neurology | 2013

Brain sources of inhibitory input to the rat rostral ventrolateral medulla

Belinda R. Bowman; Natasha N. Kumar; Sarah F. Hassan; Simon McMullan; Ann K. Goodchild

The rostral ventrolateral medulla (RVLM) contains neurons critical for cardiovascular, respiratory, metabolic, and motor control. The activity of these neurons is controlled by inputs from multiple identified brain regions; however, the neurochemistry of these inputs is largely unknown. Gamma‐aminobutyric acid (GABA) and enkephalin tonically inhibit neurons within the RVLM. The aim of this study was to identify all brain regions that provide GABAergic or enkephalinergic input to the rat RVLM. Neurons immunoreactive for cholera toxin B (CTB‐ir), retrogradely transported from the RVLM, were assessed for expression of glutamic acid decarboxylase (GAD67) or preproenkephalin (PPE) mRNA using in situ hybridization. GAD67 mRNA was expressed in CTB‐ir neurons in the following regions: the nucleus of the solitary tract (NTS, 6% of CTB‐ir neurons), area postrema (AP, 8%), caudal ventrolateral medulla (17%), midline raphe (40%), ventrolateral periaqueductal gray (VLPAG, 15%), lateral hypothalamic area (LHA, 25%), central nucleus of the amygdala (CeA, 77%), sublenticular extended amygdala (SLEA, 86%), interstitial nucleus of the posterior limb of the anterior commissure (IPAC, 56%), bed nucleus of the stria terminals (BNST, 59%), and medial preoptic area (MPA, 53%). PPE mRNA was expressed in CTB‐ir neurons in the following regions: the NTS (14% of CTB‐ir neurons), midline raphe (26%), LHA (22%), zona incerta (ZI, 15%), CeA (5%), paraventricular nucleus (PVN, 13%), SLEA (66%), and MPA (26%). Thus, limited brain regions contribute GABAergic and/or enkephalinergic input to the RVLM. Multiple neurochemically distinct pathways originate from these brain regions projecting to the RVLM. J. Comp. Neurol. 521:213–232, 2013.


Anesthesiology | 2013

Forebrain HCN1 Channels Contribute to Hypnotic Actions of Ketamine

Cheng Zhou; Jennifer E. Douglas; Natasha N. Kumar; Shaofang Shu; Douglas A. Bayliss; Xiangdong Chen

Background:Ketamine is a commonly used anesthetic, but the mechanistic basis for its clinically relevant actions remains to be determined. The authors previously showed that HCN1 channels are inhibited by ketamine and demonstrated that global HCN1 knockout mice are twofold less sensitive to hypnotic actions of ketamine. Although that work identified HCN1 channels as a viable molecular target for ketamine, it did not determine the relevant neural substrate. Methods:To localize the brain region responsible for HCN1-mediated hypnotic actions of ketamine, the authors used a conditional knockout strategy to delete HCN1 channels selectively in excitatory cells of the mouse forebrain. A combination of molecular, immunohistochemical, and cellular electrophysiologic approaches was used to verify conditional HCN1 deletion; a loss-of-righting reflex assay served to ascertain effects of forebrain HCN1 channel ablation on hypnotic actions of ketamine. Results:In conditional knockout mice, HCN1 channels were selectively deleted in cortex and hippocampus, with expression retained in cerebellum. In cortical pyramidal neurons from forebrain-selective HCN1 knockout mice, effects of ketamine on HCN1-dependent membrane properties were absent; notably, ketamine was unable to evoke membrane hyperpolarization or enhance synaptic inputs. Finally, the EC50 for ketamine-induced loss-of-righting reflex was shifted to significantly higher concentrations (by approximately 31%). Conclusions:These data indicate that forebrain principal cells represent a relevant neural substrate for HCN1-mediated hypnotic actions of ketamine. The authors suggest that ketamine inhibition of HCN1 shifts cortical neuron electroresponsive properties to contribute to ketamine-induced hypnosis.


The Journal of Physiology | 2016

Proton detection and breathing regulation by the retrotrapezoid nucleus

Patrice G. Guyenet; Douglas A. Bayliss; Ruth L. Stornetta; Marie-Gabrielle Ludwig; Natasha N. Kumar; Yingtang Shi; Peter Burke; Roy Kanbar; Tyler M. Basting; Benjamin B. Holloway; Ian C. Wenker

We discuss recent evidence which suggests that the principal central respiratory chemoreceptors are located within the retrotrapezoid nucleus (RTN) and that RTN neurons are directly sensitive to [H+]. RTN neurons are glutamatergic. In vitro, their activation by [H+] requires expression of a proton‐activated G protein‐coupled receptor (GPR4) and a proton‐modulated potassium channel (TASK‐2) whose transcripts are undetectable in astrocytes and the rest of the lower brainstem respiratory network. The pH response of RTN neurons is modulated by surrounding astrocytes but genetic deletion of RTN neurons or deletion of both GPR4 and TASK‐2 virtually eliminates the central respiratory chemoreflex. Thus, although this reflex is regulated by innumerable brain pathways, it seems to operate predominantly by modulating the discharge rate of RTN neurons, and the activation of RTN neurons by hypercapnia may ultimately derive from their intrinsic pH sensitivity. RTN neurons increase lung ventilation by stimulating multiple aspects of breathing simultaneously. They stimulate breathing about equally during quiet wake and non‐rapid eye movement (REM) sleep, and to a lesser degree during REM sleep. The activity of RTN neurons is regulated by inhibitory feedback and by excitatory inputs, notably from the carotid bodies. The latter input operates during normo‐ or hypercapnia but fails to activate RTN neurons under hypocapnic conditions. RTN inhibition probably limits the degree of hyperventilation produced by hypocapnic hypoxia. RTN neurons are also activated by inputs from serotonergic neurons and hypothalamic neurons. The absence of RTN neurons probably underlies the sleep apnoea and lack of chemoreflex that characterize congenital central hypoventilation syndrome.


Clinical and Experimental Pharmacology and Physiology | 2008

Metabotropic neurotransmission and integration of sympathetic nerve activity by the rostral ventrolateral medulla in the rat.

Paul M. Pilowsky; Stephen B. G. Abbott; Peter Burke; Melissa M.J. Farnham; Cara M. Hildreth; Natasha N. Kumar; Qun Li; Tina Lonergan; Simon McMullan; Darko Spirovski; Ann K. Goodchild

1 Cardiovascular sympathetic nerve activity at rest is grouped into waves, or bursts, that are generally, although not exclusively, related to the heart rate and to respiration. In addition, activity is also generated in response to central commands and to environmental stimuli. 2 Responsibility for the integration of all these different elements of sympathetic activity rests with pre‐motoneurons in the rostral ventrolateral medulla oblongata. These pre‐motoneurons are glutamatergic and spinally projecting where they form synapses with sympathetic preganglionic neurons. 3 Pre‐motoneurons also contain and presumably release, neurotransmitters other than glutamate, including amines and neuropeptides that act on metabotropic receptors with long‐term effects on cell function. 4 Similarly, in the rostral ventrolateral medulla oblongata the pre‐motoneurons are mainly regulated by excitatory influences from glutamate and inhibitory influences from γ‐aminobutyric acid (GABA). Major focuses of recent studies are the interactions between non‐glutamatergic and GABAergic systems and reflexes that regulate the activity of the sympathetic nervous system. 5 The results indicate that neurotransmitters acting at metabotropic receptors selectively affect different reflexes in the rostral ventrolateral medulla. It is suggested that this differential activation or attenuation of reflexes by different neurotransmitters is a mechanism by which the organism can fine‐tune its responses to different homeostatic requirements.


Neuroscience | 2010

Neuropeptide coding of sympathetic preganglionic neurons; focus on adrenally projecting populations

Natasha N. Kumar; K. Allen; Lindsay M. Parker; Hanafi Ahmad Damanhuri; Ann K. Goodchild

Chemical coding of sympathetic preganglionic neurons (SPN) suggests that the chemical content of subpopulations of SPN can define their function. Since neuropeptides, once synthesized are transported to the axon terminal, most demonstrated chemical coding has been identified using immunoreactive terminals at the target organ. Here, we use a different approach to identify and quantify the subpopulations of SPN that contain the mRNA for pituitary adenylate cyclase activating polypeptide (PACAP) or enkephalin. Using double-labeled immunohistochemistry combined with in situ hybridization (ISH) we firstly identified the distribution of these mRNAs in the spinal cord and determined quantitatively, in Sprague-Dawley rats, that many SPN at the T4-T10 spinal level contain preproPACAP (PPP+, 80 ± 3%, n=3), whereas a very small percentage contain preproenkephalin (PPE+, 4 ± 2%, n=4). A similar neurochemical distribution was found at C8-T3 spinal level. These data suggest that PACAP potentially regulates a large number of functions dictated by SPN whereas enkephalins are involved in few functions. We extended the study to explore those SPN that control adrenal chromaffin cells. We found 97 ± 5% of adrenally projecting SPN (AP-SPN) to be PPP+ (n=4) with only 47 ± 3% that were PPE+ (n=5). These data indicate that adrenally projecting PACAPergic SPN regulate both adrenal adrenaline (Ad) and noradrenaline (NAd) release whereas the enkephalinergic SPN subpopulation must control a (sub) population of chromaffin cells - most likely those that release Ad. The sensory innervation of the adrenal gland was also determined. Of the few adrenally projecting dorsal root ganglia (AP-DRG) observed, 74 ± 12% were PPP+ (n=3), whereas 1 ± 1% were PPE+ (n=3). Therefore, if sensory neurons release peptides to the adrenal medulla, PACAP is most likely involved. Together, these data provide a neurochemical basis for differential control of sympathetic outflow particularly that to the adrenal medulla.


The Journal of Comparative Neurology | 2013

Neurochemical codes of sympathetic preganglionic neurons activated by glucoprivation

Lindsay M. Parker; Natasha N. Kumar; Tina Lonergan; Ann K. Goodchild

Glucoprivation or hypoglycemia induces a range of counterregulatory responses, including glucose mobilization, reduced glucose utilization, and de novo glucose synthesis. These responses are mediated in part by the sympathetic nervous system. The aim of this study was to determine the chemical codes of sympathetic preganglionic neurons (SPN) activated by glucoprivation, induced by 2‐deoxy‐D‐glucose (2DG). SPN controlling the adrenal glands and celiac ganglia, which ultimately can innervate the liver and pancreas, were targeted together with the superior cervical ganglia (control). 23.9% ± 1.3% of SPN in the T4–T11 region contained c‐Fos immunoreactivity following 2DG; 70.3% ± 1.8% of SPN innervating the adrenal glands and 37.4% ± 3% of SPN innervating celiac ganglia were activated. 14.8% ± 3.5% of SPN (C8–T3) innervating superior cervical ganglia were activated. In the C8–T3 region 55% ± 10% of SPN activated contained PPCART, with only 12% ± 3% expressing PPE mRNA, whereas, in the T4–T11 region, 78% ± 4% contained PPE, with only 6.0% ± 0.6% expressing PPCART mRNA. Thus CART is not involved in glucose mobilization. Two chemically distinct populations of SPN (PPE+ 57.4% ± 5%, PPE− ∼40%) were identified to regulate adrenaline release in response to glucoprivation. Multiple chemically distinct SPN populations innervating a specific target could suggest their graded recruitment. The two distinct populations of SPN (PPE+ 67.6% ± 9%, PPE− ∼30%) projecting to celiac ganglia activated by glucoprivation could direct pancreatic and hepatic or other counterregulatory responses. Nearly all SPN that expressed PPE mRNA and projected to the adrenal glands or celiac ganglia were activated, suggesting a role for the inhibitory peptide enkephalin in responses evoked by glucoprivation. J. Comp. Neurol. 521:2703–2718, 2013.

Collaboration


Dive into the Natasha N. Kumar's collaboration.

Top Co-Authors

Avatar

Ann K. Goodchild

Australian School of Advanced Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon McMullan

Australian School of Advanced Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Turner

Australian School of Advanced Medicine

View shared research outputs
Top Co-Authors

Avatar

Belinda R. Bowman

Australian School of Advanced Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge