Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nate G. McDowell is active.

Publication


Featured researches published by Nate G. McDowell.


New Phytologist | 2008

Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?

Nate G. McDowell; William T. Pockman; Craig D. Allen; David D. Breshears; Neil S. Cobb; Thomas E. Kolb; Jennifer A. Plaut; John S. Sperry; Adam G. West; David G. Williams; Enrico A. Yepez

Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.


Plant Physiology | 2011

Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality

Nate G. McDowell

Events of regional-scale vegetation mortality appear to be increasing in a variety of biomes throughout the Earth and are frequently associated with increased temperatures, droughts, and often (but not always) with outbreaks of biotic agents such as insects and pathogens (for review, see [Allen et


Trends in Ecology and Evolution | 2011

The interdependence of mechanisms underlying climate-driven vegetation mortality

Nate G. McDowell; David J. Beerling; David D. Breshears; Rosie A. Fisher; Kenneth F. Raffa; Mark Stitt

Climate-driven vegetation mortality is occurring globally and is predicted to increase in the near future. The expected climate feedbacks of regional-scale mortality events have intensified the need to improve the simple mortality algorithms used for future predictions, but uncertainty regarding mortality processes precludes mechanistic modeling. By integrating new evidence from a wide range of fields, we conclude that hydraulic function and carbohydrate and defense metabolism have numerous potential failure points, and that these processes are strongly interdependent, both with each other and with destructive pathogen and insect populations. Crucially, most of these mechanisms and their interdependencies are likely to become amplified under a warmer, drier climate. Here, we outline the observations and experiments needed to test this interdependence and to improve simulations of this emergent global phenomenon.


Ecosphere | 2015

On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene

Craig D. Allen; David D. Breshears; Nate G. McDowell

Patterns, mechanisms, projections, and consequences of tree mortality and associated broad-scale forest die-off due to drought accompanied by warmer temperatures—“hotter drought”, an emerging characteristic of the Anthropocene—are the focus of rapidly expanding literature. Despite recent observational, experimental, and modeling studies suggesting increased vulnerability of trees to hotter drought and associated pests and pathogens, substantial debate remains among research, management and policy-making communities regarding future tree mortality risks. We summarize key mortality-relevant findings, differentiating between those implying lesser versus greater levels of vulnerability. Evidence suggesting lesser vulnerability includes forest benefits of elevated [CO2] and increased water-use efficiency; observed and modeled increases in forest growth and canopy greening; widespread increases in woody-plant biomass, density, and extent; compensatory physiological, morphological, and genetic mechanisms; dampen...


Frontiers in Ecology and the Environment | 2009

Tree die‐off in response to global change‐type drought: mortality insights from a decade of plant water potential measurements

David D. Breshears; Orrin B. Myers; Clifton W. Meyer; Fairley J. Barnes; Chris B. Zou; Craig D. Allen; Nate G. McDowell; William T. Pockman

Global climate change is projected to produce warmer, longer, and more frequent droughts, referred to here as “global change-type droughts”, which have the potential to trigger widespread tree die-off. However, drought-induced tree mortality cannot be predicted with confidence, because long-term field observations of plant water stress prior to, and culminating in, mortality are rare, precluding the development and testing of mechanisms. Here, we document plant water stress in two widely distributed, co-occurring species, pinon pine (Pinus edulis) and juniper (Juniperus monosperma), over more than a decade, leading up to regional-scale die-off of pinon pine trees in response to global change-related drought. Pinon leaf water potentials remained substantially below their zero carbon assimilation point for at least 10 months prior to dying, in contrast to those of juniper, which rarely dropped below their zero-assimilation point. These data suggest that pinon mortality was driven by protracted water stress,...


Plant Cell and Environment | 2014

How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

Sanna Sevanto; Nate G. McDowell; L. Turin Dickman; Robert E. Pangle; William T. Pockman

Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity.


The Plant Cell | 2008

Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability

Norbert Uehlein; Beate Otto; David T. Hanson; Matthias Fischer; Nate G. McDowell; Ralf Kaldenhoff

Photosynthesis is often limited by the rate of CO2 diffusion from the atmosphere to the chloroplast. The primary resistances for CO2 diffusion are thought to be at the stomata and at photosynthesizing cells via a combination resulting from resistances of aqueous solution as well as the plasma membrane and both outer and inner chloroplast membranes. In contrast with stomatal resistance, the resistance of biological membranes to gas transport is not widely recognized as a limiting factor for metabolic function. We show that the tobacco (Nicotiana tabacum) plasma membrane and inner chloroplast membranes contain the aquaporin Nt AQP1. RNA interference–mediated decreases in Nt AQP1 expression lowered the CO2 permeability of the inner chloroplast membrane. In vivo data show that the reduced amount of Nt AQP1 caused a 20% change in CO2 conductance within leaves. Our discovery of CO2 aquaporin function in the chloroplast membrane opens new opportunities for mechanistic examination of leaf internal CO2 conductance regulation.


New Phytologist | 2013

Sensitivity of plants to changing atmospheric CO2 concentration : from the geological past to the next century

Peter J. Franks; Mark Adams; Jeffrey S. Amthor; Margaret M. Barbour; Joseph A. Berry; David S. Ellsworth; Graham D. Farquhar; Jon Lloyd; Nate G. McDowell; Richard J. Norby; David T. Tissue; Susanne von Caemmerer

The rate of CO(2) assimilation by plants is directly influenced by the concentration of CO(2) in the atmosphere, c(a). As an environmental variable, c(a) also has a unique global and historic significance. Although relatively stable and uniform in the short term, global c(a) has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive datasets and models to develop an integrated, multi-scale assessment of the impact of changing c(a) on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling c(a) is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that tends to maintain 1 - c(i)/c(a), the relative gradient for CO(2) diffusion into the leaf, relatively constant. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing c(a) can be described by simple equations rooted in the formulation of more commonly studied short-term responses.


Bulletin of the American Meteorological Society | 2013

A Remotely Sensed Global Terrestrial Drought Severity Index

Qiaozhen Mu; Maosheng Zhao; John S. Kimball; Nate G. McDowell; Steven W. Running

Regional drought and flooding from extreme climatic events are increasing in frequency and severity, with significant adverse ecosocial impacts. Detecting and monitoring drought at regional to global scales remains challenging, despite the availability of various drought indices and widespread availability of potentially synergistic global satellite observational records. The authors have developed a method to generate a near-real-time remotely sensed drought severity index (DSI) to monitor and detect drought globally at 1-km spatial resolution and regular 8-day, monthly, and annual frequencies. The new DSI integrates and exploits information from current operational satellite-based terrestrial evapo-transpiration (ET) and vegetation greenness index [normalized difference vegetation index (NDVI)] products, which are sensitive to vegetation water stress. Specifically, this approach determines the annual DSI departure from its normal (2000–11) using the remotely sensed ratio of ET to potential ET (PET) and ...


New Phytologist | 2010

Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations

Rosie A. Fisher; Nate G. McDowell; Drew W. Purves; Paul R. Moorcroft; Stephen Sitch; Peter M. Cox; Chris Huntingford; Patrick Meir; F. Ian Woodward

*Second-generation Dynamic Global Vegetation Models (DGVMs) have recently been developed that explicitly represent the ecological dynamics of disturbance, vertical competition for light, and succession. Here, we introduce a modified second-generation DGVM and examine how the representation of demographic processes operating at two-dimensional spatial scales not represented by these models can influence predicted community structure, and responses of ecosystems to climate change. *The key demographic processes we investigated were seed advection, seed mixing, sapling survival, competitive exclusion and plant mortality. We varied these parameters in the context of a simulated Amazon rainforest ecosystem containing seven plant functional types (PFTs) that varied along a trade-off surface between growth and the risk of starvation induced mortality. *Varying the five unconstrained parameters generated community structures ranging from monocultures to equal co-dominance of the seven PFTs. When exposed to a climate change scenario, the competing impacts of CO(2) fertilization and increasing plant mortality caused ecosystem biomass to diverge substantially between simulations, with mid-21st century biomass predictions ranging from 1.5 to 27.0 kg C m(-2). *Filtering the results using contemporary observation ranges of biomass, leaf area index (LAI), gross primary productivity (GPP) and net primary productivity (NPP) did not substantially constrain the potential outcomes. We conclude that demographic processes represent a large source of uncertainty in DGVM predictions.

Collaboration


Dive into the Nate G. McDowell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chonggang Xu

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Craig D. Allen

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. H. Powers

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanna Sevanto

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosie A. Fisher

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge