Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Alépée is active.

Publication


Featured researches published by Nathalie Alépée.


Toxicology in Vitro | 2010

A proposed eye irritation testing strategy to reduce and replace in vivo studies using Bottom–Up and Top–Down approaches

Laurie Scott; Chantra Eskes; Sebastian Hoffmann; Els Adriaens; Nathalie Alépée; Monica Bufo; Richard H. Clothier; Davide Facchini; Claudine Faller; Robert Guest; John W. Harbell; Thomas Hartung; Hennicke Kamp; Béatrice Le Varlet; Marisa Meloni; Pauline McNamee; Rosemarie Osborne; Wolfgang Pape; Uwe Pfannenbecker; Menk Prinsen; Christopher Seaman; Horst Spielmann; William S. Stokes; Kevin Trouba; Christine Van den Berghe; Freddy Van Goethem; Marco Vassallo; Pilar Vinardell; Valérie Zuang

In spite of over 20 years of effort, no single in vitro assay has been developed and validated as a full regulatory replacement for the Draize Eye Irritation test. However, companies have been using in vitro methods to screen new formulations and in some cases as their primary assessment of eye irritation potential for many years. The present report shows the outcome of an Expert Meeting convened by the European Centre for the Validation of Alternative Methods in February 2005 to identify test strategies for eye irritation. In this workshop test developers/users were requested to nominate methods to be considered as a basis for the identification of such testing strategies. Assays were evaluated and categorized based on their proposed applicability domains (e.g., categories of irritation severity, modes of action, chemical class, physicochemical compatibility). The analyses were based on the data developed from current practice and published studies, the ability to predict depth of injury (within the applicable range of severity), modes of action that could be addressed and compatibility with different physiochemical forms. The difficulty in predicting the middle category of irritancy (e.g. R36, GHS Categories 2A and 2B) was recognized. The testing scheme proposes using a Bottom-Up (begin with using test methods that can accurately identify non-irritants) or Top-Down (begin with using test methods that can accurately identify severe irritants) progression of in vitro tests (based on expected irritancy). Irrespective of the starting point, the approach would identify non-irritants and severe irritants, leaving all others to the (mild/moderate) irritant GHS 2/R36 categories.


Dermatitis | 2014

Categorization of chemicals according to their relative human skin sensitizing potency.

David A. Basketter; Nathalie Alépée; Takao Ashikaga; João Barroso; Nicola Gilmour; Carsten Goebel; Jalila Hibatallah; Sebastian Hoffmann; Petra Kern; Silvia Martinozzi-Teissier; Gavin Maxwell; Kerstin Reisinger; Hitoshi Sakaguchi; Andreas Schepky; M. Tailhardat; Marie Templier

Although adoption of skin sensitization in vivo assays for hazard identification is likely to be successful in the next few years, this does not replace their use in potency prediction. Notably, measurement of potency of skin sensitizers in the local lymph node assay has been important. However, this local lymph node assay potency measure has not been formally assessed against a range of substances of known human sensitizing potential, because the latter is lacking. Accordingly, criteria for human data have been established that characterize 6 categories of human sensitizing potency, with 1 the most potent and 5 the least potent; category 6 represents true nonsensitizers. The literature has been searched, and 131 chemicals assigned into these categories according to their intrinsic potency judged only by the available human information. The criteria and data set generated provide a basis for examination of the capacity of nonanimal approaches for the determination of human sensitization potency.


Toxicology in Vitro | 2010

A catch-up validation study on reconstructed human epidermis (SkinEthic™ RHE) for full replacement of the Draize skin irritation test

Nathalie Alépée; Carine Tornier; Cécile Robert; Carole Amsellem; Marie-Hélène Roux; Olivier Doucet; Jean Pachot; Marisa Meloni; Anne de Brugerolle de Fraissinette

Efforts to fully replace the in vivo Draize skin irritation test, according to the Directive 67/548/ECC or OECD TG 404, were reinforced with the seventh Amendment of the Cosmetic Directive and the REACh regulation. In 2007, the EpiSkin test method was scientifically validated and recognized as the stand alone method to discriminate skin irritants (R38) from non-irritants (no label) according to the definition of the EU risk phrases. An ECVAM performance standards (PS) document was defined to evaluate the accuracy and reliability of other analogous test methods (ECVAM SIVS, May 2007). The present test was designed to determine the reliability and relevance of the Reconstructed Human Epidermis (RHE) model commercialized by SkinEthic. The RHE skin irritation test method consisted to topically apply topically the test substances for 42min followed by a 42h post-incubation. The main selected endpoint was the cell viability (MTT reduction), with a threshold of 50% viability. The RHE test method showed a good intra and inter-laboratory reproducibilities in a multicentric study involving three independent laboratories. The SkinEthic RHE test method showed to be relevant and reliable with a sensitivity of 90% and a specificity of 80% (MTT only) and was not improved by integrating another endpoint such as IL-1alpha. The overall accuracy was 85% resulting in the recognition of the SkinEthic RHE test method, by the ECVAM Scientific Advisory Committee in November 2008, as a stand alone replacement test method for the Draize rabbit in vivo test, as a screen, or as part of a sequential testing strategy in a weight of evidence approach, for classifying non-irritant and irritant test substances, depending on country requirements.


Toxicology in Vitro | 2015

The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization

C. Piroird; Jean-Marc Ovigne; Françoise Rousset; Silvia Martinozzi-Teissier; Charles Gomes; José Cotovio; Nathalie Alépée

The U-SENS™ assay, formerly known as MUSST (Myeloid U937 Skin Sensitization Test), is an in vitro method to assess skin sensitization. Dendritic cell activation following exposure to sensitizers was modelled in the U937 human myeloid cell line by measuring the induction of the expression of CD86 by flow cytometry. The predictive performance of U-SENS™ was assessed via a comprehensive comparison analysis with the available human and LLNA data of 175 substances. U-SENS™ showed 79% specificity, 90% sensitivity and 88% accuracy. A four laboratory ring study demonstrated the transferability, reliability and reproducibility of U-SENS™, with a reproducibility of 95% within laboratories and 79% between-laboratories, showing that the U-SENS™ assay is a promising tool in a skin sensitization risk assessment testing strategy.


Toxicology in Vitro | 2010

In vitro assessment of eye irritancy using the Reconstructed Human Corneal Epithelial SkinEthic HCE model: application to 435 substances from consumer products industry.

José Cotovio; Marie-Hélène Grandidier; Damien Lelièvre; Christelle Bremond; Carolle Amsellem; Saber Maloug; Jean-Marc Ovigne; Sophie Loisel-Joubert; Aline Van Der Lee; Anne-Marie Minondo; Christophe Capallere; Béatrice Bertino; Nathalie Alépée; Estelle Tinois-Tessonneaud; Anne De Brugerolle de Fraissinette; Jean-Roch Meunier; Jacques Leclaire

The 7th amendment of the EU Cosmetics Directive led to the ban of eye irritation testing for cosmetic ingredients in animals, effective from March 11th 2009. Over the last 20years, many efforts have been made to find reliable and relevant alternative methods. The SkinEthic HCE model was used to evaluate the in vitro eye irritancy potential of substances from a cosmetic industry portfolio. An optimized protocol based on a specific 1-h treatment and a 16-h post-treatment incubation period was first assessed on a set of 102 substances. The prediction model (PM) based on a 50% viability cut-off, allowed to draw up two classes (Irritants and Non-Irritants), with good associated sensitivity (86.2%) and specificity (83.5%). To check the robustness of the method, the evaluated set was expanded up to 435 substances. Final performances maintained a high level and were characterized by an overall accuracy value > 82% when using EU or GHS classification rules. Results showed that the SkinEthic HCE test method is a promising in vitro tool for the prediction of eye irritancy. Optimization datasets were shared with the COLIPA Eye Irritation Project Team and ECVAM experts, and reviewed as part of an ongoing progression to enter an ECVAM prospective validation study for eye irritation.


Toxicology in Vitro | 2013

Cosmetics Europe multi-laboratory pre-validation of the EpiOcular™ reconstituted human tissue test method for the prediction of eye irritation.

Uwe Pfannenbecker; S. Bessou-Touya; Claudine Faller; John W. Harbell; T. Jacob; H. Raabe; M. Tailhardat; Nathalie Alépée; A. De Smedt; B. De Wever; P. Jones; Y. Kaluzhny; B. Le Varlet; Pauline McNamee; M. Marrec-Fairley; F. Van Goethem

Cosmetics Europe, The Personal Care Association (known as Colipa before 2012), conducted a program of technology transfer and within/between laboratory reproducibility of MatTek Corporations EpiOcular™ Eye Irritation Test (EIT) as one of the two human reconstructed tissue test methods. This EIT EpiOcular™ used a single exposure period for each chemical and a prediction model based on a cut-off in relative survival [ ≤60%=irritant (I) (GHS categories 2 and 1); >60%=no classification (NC)]. Test substance single exposure time was 30 min with a 2-h post-exposure incubation for liquids and 90 min with an 18-h post-exposure incubation for solids. Tissue viability was determined by tetrazolium dye (MTT) reduction. Combinations of 20 coded chemicals were tested in 7 laboratories. Standardized laboratory documentation was used by all laboratories. Twenty liquids (11 NC/9 I) plus 5 solids (3 NC/2 I) were selected so that both exposure regimens could be assessed. Concurrent positive (methyl acetate) and negative (water) controls were tested in each trial. In all, 298 independent trials were performed and demonstrated 99.7% agreement in prediction (NC/I) across the laboratories. Coefficients of variation for the% survival for tissues from each treatment group across laboratories were generally low. This protocol has entered in 2010 the experimental phase of a formal ECVAM validation program.


Regulatory Toxicology and Pharmacology | 2013

Skin sensitisation – Moving forward with non-animal testing strategies for regulatory purposes in the EU

David A. Basketter; Nathalie Alépée; Silvia Casati; Jonathan Crozier; Dorothea Eigler; Peter Griem; Bruno Hubesch; Joop de Knecht; Robert Landsiedel; Kimmo Louekari; Irene Manou; Gavin Maxwell; Annette Mehling; Tatiana I. Netzeva; Thomas Petry; Laura H. Rossi

In a previous EPAA-Cefic LRI workshop in 2011, issues surrounding the use and interpretation of results from the local lymph node assay were addressed. At the beginning of 2013 a second joint workshop focused greater attention on the opportunities to make use of non-animal test data, not least since a number of in vitro assays have progressed to an advanced position in terms of their formal validation. It is already recognised that information produced from non-animal assays can be used in regulatory decision-making, notably in terms of classifying a substance as a skin sensitiser. The evolution into a full replacement for hazard identification, where the decision is not to classify, requires the generation of confidence in the in vitro alternative, e.g. via formal validation, the existence of peer reviewed publications and the knowledge that the assay(s) are founded on key elements of the Adverse Outcome Pathway for skin sensitisation. It is foreseen that the validated in vitro assays and relevant QSAR models can be organised into formal testing strategies to be applied for regulatory purposes by the industry. To facilitate progress, the European Partnership for Alternative Approaches to animal testing (EPAA) provided the platform for cross-industry and regulatory dialogue, enabling an essential and open debate on the acceptability of an in vitro based integrated strategy. Based on these considerations, a follow up activity was agreed upon to explore an example of an Integrated Testing Strategy for skin sensitisation hazard identification purposes in the context of REACH submissions.


Toxicology in Vitro | 2013

Cosmetics Europe multi-laboratory pre-validation of the SkinEthic™ reconstituted human corneal epithelium test method for the prediction of eye irritation

Nathalie Alépée; S. Bessou-Touya; José Cotovio; A. De Smedt; B. De Wever; Claudine Faller; P. Jones; B. Le Varlet; M. Marrec-Fairley; Uwe Pfannenbecker; M. Tailhardat; F. Van Goethem; Pauline McNamee

Cosmetics Europe, The Personal Care Association, known as Colipa before 2012, conducted a program of technology transfer and assessment of Within/Between Laboratory (WLV/BLV) reproducibility of the SkinEthic™ Reconstituted Human Corneal Epithelium (HCE) as one of two human reconstructed tissue eye irritation test methods. The SkinEthic™ HCE test method involves two exposure time treatment procedures - one for short time exposure (10 min - SE) and the other for long time exposure (60 min - LE) of tissues to test substance. This paper describes pre-validation studies of the SkinEthic™ HCE test method (SE and LE protocols) as well as the Eye Peptide Reactivity Assay (EPRA). In the SE WLV study, 30 substances were evaluated. A consistent outcome with respect to viability measurement across all runs was observed with all substances showing an SD of less than 18%. In the LE WLV study, 44 out of 45 substances were consistently classified. These data demonstrated a high level of reproducibility within laboratory for both the SE and LE treatment procedures. For the LE BLV, 19 out of 20 substances were consistently classified between the three laboratories, again demonstrating a high level of reproducibility between laboratories. The results for EPRA WLV and BLV studies demonstrated that all substances analysed were categorised similarly and that the method is reproducible. The SkinEthic™ HCE test method entered into the experimental phase of a formal ECVAM validation program in 2010.


Toxicology in Vitro | 2015

Two novel prediction models improve predictions of skin corrosive sub-categories by test methods of OECD Test Guideline No. 431

Bertrand Desprez; João Barroso; Claudius Griesinger; Helena Kandarova; Nathalie Alépée; Horst W. Fuchs

Alternative test methods often use prediction models (PMs) for converting endpoint measurements into predictions. Two PMs are used for the skin corrosion tests (SCTs) of the OECD Test Guideline No. 431 (TG 431). One is specific to EpiSkin™ test method, whereas EpiDerm™, SkinEthic™ RHE and epiCS® share a common PM. These methods are based on reconstructed human epidermis models wherein cell viability values are measured. Their PMs allow translating those values into sub-categories of corrosive chemicals, Category 1A (Cat1A) and a combination of Categories 1B/1C (Cat1BC), and identifying non-corrosive (NC) chemicals. EpiSkin™s PM already results in sufficiently accurate predictions. The common PM of the three others accurately identifies all corrosive chemicals but, for sub-categorization, an important fraction of Cat1BC chemicals (40-50%) is over-predicted as Cat1A. This paper presents a post-hoc analysis of validation data on a set of n=80 chemicals. It investigates: why this common PM causes these over-predictions and how two novel PMs that we developed (PMvar1 and PMvar2) improve the predictive capacity of these methods. PMvar1 is based on a two-step approach; PMvar2 is based on a single composite indicator of cell viability. Both showed a greater capacity to predict Cat1BC, while Cat1A correct predictions remaining at least at the same level of EpiSkin™. We suggest revising TG 431, to include the novel PMs in view of improving the predictive capacity of its SCTs.


Regulatory Toxicology and Pharmacology | 2012

Regulatory assessment of in vitro skin corrosion and irritation data within the European framework: Workshop recommendations

Chantra Eskes; Véronique Detappe; Herman Koëter; Joachim Kreysa; Manfred Liebsch; Valérie Zuang; Patric Amcoff; João Barroso; José Cotovio; Robert Guest; Martina Hermann; Sebastian Hoffmann; Philippe Masson; Nathalie Alépée; Luis Alfonso Arce; Beat J. Brüschweiler; Tiziana Catone; Rostislav Cihak; Jack Clouzeau; Federica d’Abrosca; Cédric Delveaux; Jean Paul Derouette; Oliver Engelking; Davide Facchini; Mirjam Fröhlicher; Markus Hofmann; Nancy B. Hopf; Jennifer Molinari; Aurelia Oberli; Matthieu Ott

Validated in vitro methods for skin corrosion and irritation were adopted by the OECD and by the European Union during the last decade. In the EU, Switzerland and countries adopting the EU legislation, these assays may allow the full replacement of animal testing for identifying and classifying compounds as skin corrosives, skin irritants, and non irritants. In order to develop harmonised recommendations on the use of in vitro data for regulatory assessment purposes within the European framework, a workshop was organized by the Swiss Federal Office of Public Health together with ECVAM and the BfR. It comprised stakeholders from various European countries involved in the process from in vitro testing to the regulatory assessment of in vitro data. Discussions addressed the following questions: (1) the information requirements considered useful for regulatory assessment; (2) the applicability of in vitro skin corrosion data to assign the corrosive subcategories as implemented by the EU Classification, Labelling and Packaging Regulation; (3) the applicability of testing strategies for determining skin corrosion and irritation hazards; and (4) the applicability of the adopted in vitro assays to test mixtures, preparations and dilutions. Overall, a number of agreements and recommendations were achieved in order to clarify and facilitate the assessment and use of in vitro data from regulatory accepted methods, and ultimately help regulators and scientists facing with the new in vitro approaches to evaluate skin irritation and corrosion hazards and risks without animal data.

Collaboration


Dive into the Nathalie Alépée's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Kandarova

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Sandra Verstraelen

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

A.R. Van Rompay

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge