Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Bracke is active.

Publication


Featured researches published by Nathalie Bracke.


Nucleic Acids Research | 2013

Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides

Evelien Wynendaele; Antoon Bronselaer; Joachim Nielandt; Matthias D’Hondt; Sofie Stalmans; Nathalie Bracke; Frederick Verbeke; Christophe Van de Wiele; Guy De Tré; Bart De Spiegeleer

Quorum-sensing (QS) peptides are biologically attractive molecules, with a wide diversity of structures and prone to modifications altering or presenting new functionalities. Therefore, the Quorumpeps database (http://quorumpeps.ugent.be) is developed to give a structured overview of the QS oligopeptides, describing their microbial origin (species), functionality (method, result and receptor), peptide links and chemical characteristics (3D-structure-derived physicochemical properties). The chemical diversity observed within this group of QS signalling molecules can be used to develop new synthetic bio-active compounds.


PLOS ONE | 2015

Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo

Sofie Stalmans; Nathalie Bracke; Evelien Wynendaele; Bert Gevaert; Kathelijne Peremans; Christian Burvenich; Ingeborgh Polis; Bart De Spiegeleer

Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47–57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47–57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.


PLOS ONE | 2013

Chemical-Functional Diversity in Cell-Penetrating Peptides

Sofie Stalmans; Evelien Wynendaele; Nathalie Bracke; Bert Gevaert; Matthias D’Hondt; Kathelijne Peremans; Christian Burvenich; Bart De Spiegeleer

Cell-penetrating peptides (CPPs) are a promising tool to overcome cell membrane barriers. They have already been successfully applied as carriers for several problematic cargoes, like e.g. plasmid DNA and (si)RNA, opening doors for new therapeutics. Although several hundreds of CPPs are already described in the literature, only a few commercial applications of CPPs are currently available. Cellular uptake studies of these peptides suffer from inconsistencies in used techniques and other experimental conditions, leading to uncertainties about their uptake mechanisms and structural properties. To clarify the structural characteristics influencing the cell-penetrating properties of peptides, the chemical-functional space of peptides, already investigated for cellular uptake, was explored. For 186 peptides, a new cell-penetrating (CP)-response was proposed, based upon the scattered quantitative results for cellular influx available in the literature. Principal component analysis (PCA) and a quantitative structure-property relationship study (QSPR), using chemo-molecular descriptors and our newly defined CP-response, learned that besides typical well-known properties of CPPs, i.e. positive charge and amphipathicity, the shape, structure complexity and the 3D-pattern of constituting atoms influence the cellular uptake capacity of peptides.


Nature Structural & Molecular Biology | 2012

Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1

Jonathan Elegheert; Nathalie Bracke; Philippe Pouliot; Irina Gutsche; Alexander V. Shkumatov; Nicolas Tarbouriech; Kenneth Verstraete; Anaïs Bekaert; Wim P. Burmeister; Dmitri I. Svergun; Bart N. Lambrecht; Bjorn Vergauwen; Savvas N. Savvides

Hematopoietic human colony-stimulating factor 1 (hCSF-1) is essential for innate and adaptive immunity against viral and microbial infections and cancer. The human pathogen Epstein-Barr virus secretes the lytic-cycle protein BARF1 that neutralizes hCSF-1 to achieve immunomodulation. Here we show that BARF1 binds the dimer interface of hCSF-1 with picomolar affinity, away from the cognate receptor–binding site, to establish a long-lived complex featuring three hCSF-1 at the periphery of the BARF1 toroid. BARF1 locks dimeric hCSF-1 into an inactive conformation, rendering it unable to signal via its cognate receptor on human monocytes. This reveals a new functional role for hCSF-1 cooperativity in signaling. We propose a new viral strategy paradigm featuring an allosteric decoy receptor of the competitive type, which couples efficient sequestration and inactivation of the host growth factor to abrogate cooperative assembly of the cognate signaling complex.


Structure | 2011

Extracellular Complexes of the Hematopoietic Human and Mouse CSF-1 Receptor Are Driven by Common Assembly Principles

Jonathan Elegheert; Ambroise Desfosses; Alexander V. Shkumatov; Xiongwu Wu; Nathalie Bracke; Kenneth Verstraete; Kathleen Van Craenenbroeck; Bernard R. Brooks; Dmitri I. Svergun; Bjorn Vergauwen; Irina Gutsche; Savvas N. Savvides

The hematopoietic colony stimulating factor-1 receptor (CSF-1R or FMS) is essential for the cellular repertoire of the mammalian immune system. Here, we report a structural and mechanistic consensus for the assembly of human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts and striking structural plasticity at the extremities of the complex. Studies by small-angle X-ray scattering of unliganded hCSF-1R point to large domain rearrangements upon CSF-1 binding, and provide structural evidence for the relevance of receptor predimerization at the cell surface. Comparative structural and binding studies aiming to dissect the assembly principles of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor coupled to ensuing receptor-receptor interactions are common denominators in extracellular complex formation.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Related impurities in peptide medicines

Matthias D’Hondt; Nathalie Bracke; Lien Taevernier; Bert Gevaert; Frederick Verbeke; Evelien Wynendaele; Bart De Spiegeleer

Peptides are an increasingly important group of pharmaceuticals, positioned between classic small organic molecules and larger bio-molecules such as proteins. Currently, the peptide drug market is growing twice as fast as other drug markets, illustrating the increasing clinical as well as economical impact of this medicine group. Most peptides today are manufactured by solid-phase peptide synthesis (SPPS). This review will provide a structured overview of the most commonly observed peptide-related impurities in peptide medicines, encompassing the active pharmaceutical ingredients (API or drug substance) as well as the finished drug products. Not only is control of these peptide-related impurities and degradants critical for the already approved and clinically used peptide-drugs, these impurities also possess the capability of greatly influencing initial functionality studies during early drug discovery phases, possibly resulting in erroneous conclusions. The first group of peptide-related impurities is SPPS-related: deletion and insertion of amino acids are related to inefficient Fmoc-deprotection and excess use of amino acid reagents, respectively. Fmoc-deprotection can cause racemization of amino acid residues and thus diastereomeric impurities. Inefficient deprotection of amino acid side chains results into peptide-protection adducts. Furthermore, unprotected side chains can react with a variety of reagents used in the synthesis. Oxidation of amino acid side chains and dimeric-to-oligomeric impurities were also observed. Unwanted peptide counter ions such as trifluoroacetate, originating from the SPPS itself or from additional purification treatments, may also be present in the final peptide product. Contamination of the desired peptide product by other unrelated peptides was also seen, pointing out the lack of appropriate GMP. The second impurity group results from typical peptide degradation mechanisms such as β-elimination, diketopiperazine, pyroglutamate and succinimide formation. These SPPS- and degradation-related impurity types can also found in the finished peptide drug products, which can additionally contain a third group of related impurities, i.e. the API-excipient degradation products.


Journal of Medicinal Chemistry | 2012

Variation of the net charge, lipophilicity, and side chain flexibility in Dmt(1)-DALDA: Effect on Opioid Activity and Biodistribution.

Alexandre Novoa; Sylvia Van Dorpe; Evelien Wynendaele; Mariana Spetea; Nathalie Bracke; Sofie Stalmans; Cecilia Betti; Nga N. Chung; Carole Lemieux; Johannes Zuegg; Matthew A. Cooper; Dirk Tourwé; Bart De Spiegeleer; Peter W. Schiller; Steven Ballet

The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.


Protein and Peptide Letters | 2014

Blood-brain barrier transport of short proline-rich antimicrobial peptides

Sofie Stalmans; Evelien Wynendaele; Nathalie Bracke; Daniel Knappe; Ralf Hoffmann; Kathelijne Peremans; Ingeborgh Polis; Christian Burvenich; Bart De Spiegeleer

Infections by antibiotic-resistant bacteria are becoming a great risk for human health, leading to an urgent need for new efficient antibacterial therapies. The short, proline-rich antimicrobial peptides from insects gained a lot of interest as a potential antibacterial treatment, having a low toxicity profile and being mainly active against Gram-negative bacteria. To know whether these antimicrobial peptides can be used for the treatment of cerebral infections, the blood-brain barrier transport characteristics of these peptides were investigated. This study describes the results of the in vivo blood-brain barrier experiments in mice, as well as the in vitro metabolic stability in mouse plasma and brain of apidaecin Api137, oncocin, drosocin and drosocin Pro5Hyp. The four investigated peptides showed a significant influx into the brain with a K(in) ranging between 0.37 and 0.86 µL/g x min and brain distribution volumes of 19.6 to 25.8 µL/g. Only for drosocin, a significant efflux was determined, with a k(out) of 0.22 min(-1). After entering the brain, oncocin was for approximately 80% trapped in the endothelial cells, while the other peptides reached the brain parenchyma for about 70%. All peptides were stable in plasma and brain during the experiments, with estimated metabolic half-lives ranging between 47 min and 637 min. We conclude that the investigated short, proline-rich antimicrobial peptides show an influx into the brain, which make them a promising antibacterial treatment of cerebral infections.


Malaria Journal | 2013

A rapid stability-indicating, fused-core HPLC method for simultaneous determination of β-artemether and lumefantrine in anti-malarial fixed dose combination products

Sultan Suleman; Kirsten Vandercruyssen; Evelien Wynendaele; Matthias D’Hondt; Nathalie Bracke; Luc Duchateau; Christian Burvenich; Kathelijne Peremans; Bart De Spiegeleer

BackgroundArtemisinin-based fixed dose combination (FDC) products are recommended by World Health Organization (WHO) as a first-line treatment. However, the current artemisinin FDC products, such as β-artemether and lumefantrine, are inherently unstable and require controlled distribution and storage conditions, which are not always available in resource-limited settings. Moreover, quality control is hampered by lack of suitable analytical methods. Thus, there is a need for a rapid and simple, but stability-indicating method for the simultaneous assay of β-artemether and lumefantrine FDC products.MethodsThree reversed-phase fused-core HPLC columns (Halo RP-Amide, Halo C18 and Halo Phenyl-hexyl), all thermostated at 30°C, were evaluated. β-artemether and lumefantrine (unstressed and stressed), and reference-related impurities were injected and chromatographic parameters were assessed. Optimal chromatographic parameters were obtained using Halo RP-Amide column and an isocratic mobile phase composed of acetonitrile and 1mM phosphate buffer pH 3.0 (52:48; V/V) at a flow of 1.0 ml/min and 3 μl injection volume. Quantification was performed at 210 nm and 335 nm for β-artemether and for lumefantrine, respectively. In-silico toxicological evaluation of the related impurities was made using Derek Nexus v2.0®.ResultsBoth β-artemether and lumefantrine were separated from each other as well as from the specified and unspecified related impurities including degradants. A complete chromatographic run only took four minutes. Evaluation of the method, including a Plackett-Burman robustness verification within analytical QbD-principles, and real-life samples showed the method is suitable for quantitative assay purposes of both active pharmaceutical ingredients, with a mean recovery relative standard deviation (± RSD) of 99.7 % (± 0.7%) for β-artemether and 99.7 % (± 0.6%) for lumefantrine. All identified β-artemether-related impurities were predicted in Derek Nexus v2.0® to have toxicity risks similar to β-artemether active pharmaceutical ingredient (API) itself.ConclusionsA rapid, robust, precise and accurate stability-indicating, quantitative fused-core isocratic HPLC method was developed for simultaneous assay of β-artemether and lumefantrine. This method can be applied in the routine regulatory quality control of FDC products. The in-silico toxicological investigation using Derek Nexus® indicated that the overall toxicity risk for β-artemether-related impurities is comparable to that of β-artemether API.


Drug Testing and Analysis | 2015

Peptide profiling of Internet-obtained Cerebrolysin using high performance liquid chromatography – electrospray ionization ion trap and ultra high performance liquid chromatography – ion mobility – quadrupole time of flight mass spectrometry

Bert Gevaert; Matthias D'Hondt; Nathalie Bracke; Han Yao; Evelien Wynendaele; Johannes P. C. Vissers; Martin De Cecco; Jan Claereboudt; Bart De Spiegeleer

Cerebrolysin, a parenteral peptide preparation produced by controlled digestion of porcine brain proteins, is an approved nootropic medicine in some countries. However, it is also easily and globally available on the Internet. Nevertheless, until now, its exact chemical composition was unknown. Using high performance liquid chromatography (HPLC) coupled to ion trap and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-ion mobility-time-of-flight mass spectrometry (Q-IM-TOF MS), combined with UniProt pig protein database search and PEAKS de novo sequencing, we identified 638 unique peptides in an Internet-obtained Cerebrolysin sample. The main components in this sample originate from tubulin alpha- and beta-chain, actin, and myelin basic protein. No fragments of known neurotrophic factors like glial cell-derived neurotrophic factor (GDNF), neurotrophin nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) were found, suggesting that the activities reported in the literature are likely the result of new, hitherto unknown cryptic peptides with nootropic properties.

Collaboration


Dive into the Nathalie Bracke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge