Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Busschaert is active.

Publication


Featured researches published by Nathalie Busschaert.


Journal of the American Chemical Society | 2011

Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination

Nathalie Busschaert; Marco Wenzel; Mark E. Light; Paulina Iglesias-Hernández; Ricardo Pérez-Tomás; Philip A. Gale

A series of easy-to-make fluorinated tripodal anion transporters containing urea and thiourea groups have been prepared and their anion transport properties studied. Vesicle anion transport assays using ion-selective electrodes show that this class of compound is capable of transporting chloride through a lipid bilayer via a variety of mechanisms, including chloride/H+ cotransport and chloride/nitrate, chloride/bicarbonate, and to a lesser extent an unusual chloride/sulfate antiport process. Calculations indicate that increasing the degree of fluorination of the tripodal transmembrane transporters increases the lipophilicity of the transporter and this is shown to be the major contributing factor in the superior transport activity of the fluorinated compounds, with a maximum transport rate achieved for clog P = 8. The most active transporter 5 contained a urea functionality appended with a 3,5-bis(trifluoromethyl)phenyl group and was able to mediate transmembrane chloride transport at receptor to lipid ratios as low as 1:250000. Proton NMR titration and single crystal X-ray diffraction revealed the ability of the tripodal receptors to bind different anions with varying affinities in a 1:1 or 2:1 stoichiometry in solution and in the solid state. We also provide evidence that the most potent anion transporters are able to induce apoptosis in human cancer cells by using a selection of in vitro viability and fluorescence assays.


Nature Chemistry | 2014

Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells

Sung Kyun Ko; Sung Kuk Kim; Andrew Share; Vincent M. Lynch; Jinhong Park; Wan Namkung; Wim Van Rossom; Nathalie Busschaert; Philip A. Gale; Jonathan L. Sessler; Injae Shin

Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.


Angewandte Chemie | 2012

Squaramides as Potent Transmembrane Anion Transporters

Nathalie Busschaert; Isabelle L. Kirby; Sarah Young; Simon J. Coles; Peter N. Horton; Mark E. Light; Philip A. Gale

Square peg in a round ball: squaramides are shown to be potent transmembrane anion transporters for both chloride and bicarbonate, performing better than the thiourea and urea analogues. Studies into the nature of this transport point to a mobile carrier mechanism, where the squaramide delivers the anion cargo across the lipid bilayer (see scheme, green sphere=anion). These drug-like molecules provide a platform for the development of a new generation of anion-transport systems.


Angewandte Chemie | 2013

Small‐Molecule Lipid‐Bilayer Anion Transporters for Biological Applications

Nathalie Busschaert; Philip A. Gale

The development of small-molecule lipid-bilayer anion transporters for potential future use in channel replacement therapy for the treatment of diseases caused by dysregulation of anion transport (such as cystic fibrosis), and in treating cancer by perturbing chemical gradients within cells, thus triggering apoptosis, is an area of intense current interest. This Minireview looks at recent developments in the design of small-molecule transmembrane anion transporters and focuses on the progress so far in employing these compounds in biological systems.


Chemical Science | 2014

Synthetic transporters for sulfate: a new method for the direct detection of lipid bilayer sulfate transport

Nathalie Busschaert; Louise E. Karagiannidis; Marco Wenzel; Cally J. E. Haynes; Neil J. Wells; Philip G. Young; Damjan Makuc; Janez Plavec; Katrina A. Jolliffe; Philip A. Gale

The transmembrane transport of anions by small synthetic molecules is a growing field in supramolecular chemistry and has focussed mainly on the transmembrane transport of chloride. On the other hand, the transport of the highly hydrophilic sulfate anion across lipid bilayers is much less developed, even though the inability to transport sulfate across cellular membranes has been linked to a variety of genetic diseases. Tris-thioureas possess high sulfate affinities and have been shown to be excellent chloride and bicarbonate transporters. Herein we report the sulfate transport abilities of a series of tris-ureas and tris-thioureas based on a tris(2-aminoethyl)amine or cyclopeptide scaffold. We have developed a new technique based on 33S NMR that can be used to monitor sulfate transport, using 33S-labelled sulfate and paramagnetic agents such as Mn2+ and Fe3+ to discriminate between intra- and extravesicular sulfate. Reasonable sulfate transport abilities were found for the reported tris-ureas and tris-thioureas, providing a starting point for the development of more powerful synthetic sulfate transporters that can be used in the treatment of certain channelopathies or as a model for biological sulfate transporters.


Chemical Science | 2013

Towards predictable transmembrane transport: QSAR analysis of anion binding and transport

Nathalie Busschaert; Samuel J. Bradberry; Marco Wenzel; Cally J. E. Haynes; Jennifer R. Hiscock; Isabelle L. Kirby; Louise E. Karagiannidis; Stephen J. Moore; Neil J. Wells; Julie Herniman; G. John Langley; Peter N. Horton; Mark E. Light; Igor Marques; Paulo J. Costa; Vítor Félix; Jeremy G. Frey; Philip A. Gale

The transport of anions across biological membranes by small molecules is a growing research field due to the potential therapeutic benefits of these compounds. However, little is known about the exact mechanism by which these drug-like molecules work and which molecular features make a good transporter. An extended series of 1-hexyl-3-phenylthioureas were synthesized, fully characterized (NMR, mass spectrometry, IR and single crystal diffraction) and their anion binding and anion transport properties were assessed using 1H NMR titration techniques and a variety of vesicle-based experiments. Quantitative structure–activity relationship (QSAR) analysis revealed that the anion binding abilities of the mono-thioureas are dominated by the (hydrogen bond) acidity of the thiourea NH function. Furthermore, mathematical models show that the experimental transmembrane anion transport ability is mainly dependent on the lipophilicity of the transporter (partitioning into the membrane), but smaller contributions of molecular size (diffusion) and hydrogen bond acidity (anion binding) were also present. Finally, we provide the first step towards predictable anion transport by employing the QSAR equations to estimate the transmembrane transport ability of four new compounds.


Organic and Biomolecular Chemistry | 2014

Acylthioureas as anion transporters: the effect of intramolecular hydrogen bonding

Cally J. E. Haynes; Nathalie Busschaert; Isabelle L. Kirby; Julie Herniman; Mark E. Light; Neil J. Wells; Igor Marques; Vítor Félix; Philip A. Gale

Small molecule synthetic anion transporters may have potential application as therapeutic agents for the treatment of diseases including cystic fibrosis and cancer. Understanding the factors that can dictate the anion transport activity of such transporters is a crucial step towards their application in biological systems. In this study a series of acylthiourea anion transporters were synthesised and their anion binding and transport properties in POPC bilayers have been investigated. The transport activity of these receptors is dominated by their lipophilicity, which is in turn dependent on both substituent effects and the formation and strength of an intramolecular hydrogen bond as inferred from DFT calculations. This is in contrast to simpler thiourea systems, in which the lipophilicity depends predominantly on substituent effects alone.


Angewandte Chemie | 2015

High-Affinity Anion Binding by Steroidal Squaramide Receptors**

Sophie J. Edwards; Hennie Valkenier; Nathalie Busschaert; Philip A. Gale; Anthony P. Davis

Exceptionally powerful anion receptors have been constructed by placing squaramide groups in axial positions on a steroidal framework. The steroid preorganizes the squaramide NH groups such that they can act cooperatively on a bound anion, while maintaining solubility in nonpolar media. The acidic NH groups confer higher affinities than previously-used ureas or thioureas. Binding constants exceeding 1014 m−1 have been measured for tetraethylammonium salts in chloroform by employing a variation of Cram’s extraction procedure. The receptors have also been studied as transmembrane anion carriers in unilamellar vesicles. Unusually their activities do not correlate with anion affinities, thus suggesting an upper limit for binding strength in the design of anion carriers.


Chemical Science | 2014

Thiosquaramides: pH switchable anion transporters†

Nathalie Busschaert; Robert B. P. Elmes; Dawid D. Czech; Xin Wu; Isabelle L. Kirby; Evan M. Peck; Kevin D. Hendzel; Scott K. Shaw; Bun Chan; Bradley D. Smith; Katrina A. Jolliffe; Philip A. Gale

The transport of anions across cellular membranes is an important biological function governed by specialised proteins. In recent years, many small molecules have emerged that mimick the anion transport behaviour of these proteins, but only a few of these synthetic molecules also display the gating/switching behaviour seen in biological systems. A small series of thiosquaramides was synthesised and their pH-dependent chloride binding and anion transport behaviour was investigated using 1H NMR titrations, single crystal X-ray diffraction and a variety of vesicle-based techniques. Spectrophotometric titrations and DFT calculations revealed that the thiosquaramides are significantly more acidic than their oxosquaramide analogues, with pKa values between 4.0 and 9.0. This led to the observation that at pH 7.2 the anion transport ability of the thiosquaramides is fully switched OFF due to deprotonation of the receptor, but is completely switched ON at lower pH.


Nature Chemistry | 2017

A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

Nathalie Busschaert; Seong Hyun Park; Kyung Hwa Baek; Yoon Pyo Choi; Jinhong Park; Ethan N. W. Howe; Jennifer R. Hiscock; Louise E. Karagiannidis; Igor Marques; Vítor Félix; Wan Namkung; Jonathan L. Sessler; Philip A. Gale; Injae Shin

Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

Collaboration


Dive into the Nathalie Busschaert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Light

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawid D. Czech

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil J. Wells

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge