Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Carrasco is active.

Publication


Featured researches published by Nathalie Carrasco.


Journal of Physical Chemistry A | 2009

Chemical characterization of Titan's tholins: solubility, morphology and molecular structure revisited

Nathalie Carrasco; Isabelle Schmitz-Afonso; Jean-Yves Bonnet; Eric Quirico; Roland Thissen; Aïcha Bagag; Olivier Laprévote; Arnaud Buch; Alexandre Giulani; Gilles Adandé; Fakhreddine Ouni; Edith Hadamcik; Cyril Szopa; Guy Cernogora

In this work Titans atmospheric chemistry is simulated using a capacitively coupled plasma radio frequency discharge in a N(2)-CH(4) stationnary flux. Samples of Titans tholins are produced in gaseous mixtures containing either 2 or 10% methane before the plasma discharge, covering the methane concentration range measured in Titans atmosphere. We study their solubility and associated morphology, their infrared spectroscopy signature and the mass distribution of the soluble fraction by mass spectrometry. An important result is to highlight that the previous Titans tholin solubility studies are inappropriate to fully characterize such a heterogeneous organic matter and we develop a new protocol to evaluate quantitatively tholins solubility. We find that tholins contain up to 35% in mass of molecules soluble in methanol, attached to a hardly insoluble fraction. Methanol is then chosen as a discriminating solvent to characterize the differences between soluble and insoluble species constituting the bulk tholins. No significant morphological change of shape or surface feature is derived from scanning electron microscopy after the extraction of the soluble fraction. This observation suggests a solid structure despite an important porosity of the grains. Infrared spectroscopy is recorded for both fractions. The IR spectra of the bulk, soluble, and insoluble tholins fractions are found to be very similar and reveal identical chemical signatures of nitrogen bearing functions and aliphatic groups. This result confirms that the chemical information collected when analyzing only the soluble fraction provides a valuable insight representative of the bulk material. The soluble fraction is ionized with an atmospheric pressure photoionization source and analyzed by a hybrid mass spectrometer. The congested mass spectra with one peak at every mass unit between 50 and 800 u confirm that the soluble fraction contains a complex mixture of organic molecules. The broad distribution, however, exhibits a regular pattern of mass clusters. Tandem collision induced dissociation analysis is performed in the negative ion mode to retrieve structural information. It reveals that (i) the molecules are ended by methyl, amine and cyanide groups, (ii) a 27 u neutral moiety (most probably HCN) is often released in the fragmentation of tholin anions, and (iii) an ubiquitous ionic fragment at m/z 66 is found in all tandem spectra. A tentative structure is proposed for this negative ion.


Astrobiology | 2012

Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.

Sarah M. Hörst; Roger V. Yelle; Arnaud Buch; Nathalie Carrasco; Guy Cernogora; Eric Quirico; Ella Sciamma-O'Brien; Mark A. Smith; Árpád Somogyi; Cyril Szopa; Roland Thissen; V. Vuitton

The discovery of large (>100 u) molecules in Titans upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.


Analytical Chemistry | 2010

Tholinomics—Chemical Analysis of Nitrogen-Rich Polymers

Pascal Pernot; Nathalie Carrasco; Roland Thissen; Isabelle Schmitz-Afonso

The polymeric composition of Titans tholins--laboratory analogues of Titans aerosols--is elucidated using high-resolution mass spectrometry. This complex organic matter is produced by plasma discharge in a gaseous nitrogen-methane mixture and analyzed with a hybrid linear trap/orbitrap mass-spectrometer. The highly structured mass spectra are treated with tools developed for petroleomics (Kendrick and van Krevelen diagrams), with original adaptations for nitrogen-rich compounds. Our goal is to find the best chemical basis set to describe the compositional space that these polymers occupy, to shed light onto the chemical structure of tholins. We succeeded in assigning the molecules identified in the mass spectra of tholins to a small number of regularly distributed X-(CH(2))(m)(HCN)(n) families, where the balanced copolymer (m = n) is determined to play a central role. Within each family, the polymer lengths n and m present Poisson-type distributions. We also identify the smallest species of a subset of families as linear and cyclic amino nitrile compounds of great astrobiological interest: biguanide, guanidin, acetamidine, aminoacetonitrile, and methylimidazole.


Journal of Physical Chemistry A | 2009

How Measurements of Rate Coefficients at Low Temperature Increase the Predictivity of Photochemical Models of Titan’s Atmosphere†

Eric Hébrard; M. Dobrijevic; Pascal Pernot; Nathalie Carrasco; Astrid Bergeat; Kevin M. Hickson; André Canosa; S. D. Le Picard; Ian R. Sims

The predictivity of photochemical models of Titans atmosphere depends strongly on the precision and accuracy of reaction rates. For many reactions, large uncertainty results from the extrapolation of rate laws to low temperatures. A few reactions have been measured directly at temperatures relevant to Titans atmosphere. In the present study, we observed the consequences of the reduced uncertainty attributed to these reactions. The global predictivity of the model was improved, i.e., most species are predicted with lower uncertainty factors. Nevertheless, high uncertainty factors are still observed, and a new list of key reactions has been established.


Astrophysical Journal Supplement Series | 2013

CRITICAL REVIEW OF N, N+, N-2(+), N++, And N-2(++) MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE

Nathalie Carrasco; Roland Thissen; V. Vuitton; Christian Alcaraz; Pascal Pernot; Nadia Balucani; Piergiorgio Casavecchia; André Canosa; Sébastien D. Le Picard; Jean-Christophe Loison; Zdenek Herman; Jan Zabka; Daniela Ascenzi; Paolo Tosi; Pietro Franceschi; Stephen D. Price; P. Lavvas

This paper is a detailed critical review of the production processes and reactions of N, N+, N+ 2, N++, and N++ 2 of relevance to Titans atmosphere. The review includes neutral, ion-molecule, and recombination reactions. The review covers all possible active nitrogen species under Titans atmospheric conditions, specifically N2 (A3Σ+ u), N (4 S), N (2 D), N (2 P), N+ 2, N+ (3 P), N+ (1 D), N++ 2, and N++ species, and includes a critical survey of the reactions of N, N+, N+ 2, N++, and N++ 2 with N2, H2, D2, CH4, C2H2, C2H4, C2H6, C3H8 and the deuterated hydrocarbon analogs, as well as the recombination reactions of N+ 2, N+, N++ 2, and N++. Production processes, lifetimes, and quenching by collisions with N2 of all reactant species are reviewed. The N (4 S) state is reactive with radicals and its reactions with CH2, CH3, C2H3, and C2H5 are reviewed. Metastable states N2(A3Σ+u), N (2 D), and N (2 P) are either reactive or quenched by collisions with the target molecules reviewed. The reactions of N+ (1 D) have similar rate constants as N+ (3 P), but the product branching ratios differ significantly. Temperature effects and the role of the kinetic energy content of reactants are investigated. In all cases, experimental uncertainties of laboratory data are reported or estimated. Recommended values with uncertainties, or estimated values when no data are available, are given for rate constants and product branching ratios at 300 K and at the atmospheric temperature range of Titan (150-200 K for neutral reactions and 150 K for ion reactions).


Journal of Geophysical Research | 2012

Titan's ionospheric composition and structure: Photochemical modeling of Cassini INMS data

J. H. Westlake; J.H Waite; Kathleen Mandt; Nathalie Carrasco; J. M. Bell; B. A. Magee; Jan-Erik Wahlund

Titans upper atmosphere produces an ionosphere at high altitudes from photoionization and electron impact that exhibits complex chemical processes in which hydrocarbons and nitrogen-containing molecules are produced through ion-molecule reactions. The structure and composition of Titans ionosphere has been extensively investigated by the Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft. We present a detailed study using linear correlation analysis, 1-D photochemical modeling, and empirical modeling of Titans dayside ionosphere constrained by Cassini measurements. The 1-D photochemical model is found to reproduce the primary photoionization products of N2 and CH4. The major ions, CH5+, C2H5+, and HCNH+ are studied extensively to determine the primary processes controlling their production and loss. To further investigate the chemistry of Titans ionosphere we present an empirical model of the ion densities that calculates the ion densities using the production and loss rates derived from the INMS data. We find that the chemistry included in our model sufficiently reproduces the hydrocarbon species as observed by the INMS. However, we find that the chemistry from previous models appears insufficient to accurately reproduce the nitrogen-containing organic compound abundances observed by the INMS. The major ion, HCNH+, is found to be overproduced in both the empirical and 1-D photochemical models. We analyze the processes producing and consuming HCNH+ in order to determine the cause of this discrepancy. We find that a significant chemical loss process is needed. We suggest that the loss process must be with one of the major components, namely C2H2, C2H4, or H2.


Journal of Physical Chemistry A | 2010

Determination of the absolute photoionization cross sections of CH3 and I produced from a pyrolysis source, by combined synchrotron and vacuum ultraviolet laser studies.

Bérenger Gans; Luiz A. V. Mendes; Séverine Boyé-Péronne; Stéphane Douin; Gustavo García; Héloïse Soldi-Lose; Barbara Cunha de Miranda; Christian Alcaraz; Nathalie Carrasco; Pascal Pernot; Dolores Gauyacq

A pyrolysis source coupled to a supersonic expansion has been used to produce the CH3 radical from two precursors, iodomethane CH3I and nitromethane CH3NO2. The relative ionization yield of CH3 has been recorded at the SOLEIL Synchrotron Radiation source in the range 9.0-11.6 eV, and its ionization threshold has been modeled by taking into account the vibrational and rotational temperature of the radical in the molecular beam. The relative photoionization yield has been normalized to an absolute cross section scale at a fixed wavelength (118.2 nm, sigma(i)(CH3) = 6.7(-1.8)(+2.4) Mb, 95% confidence interval) in an independent laboratory experiment using the same pyrolysis source, a vacuum ultraviolet (VUV) laser, and a carefully calibrated detection chain. The resulting absolute cross section curve is in good agreement with the recently published measurements by Taatjes et al., although with an improved signal-to-noise ratio. The absolute photoionization cross section of CH3I at 118.2 nm has also been measured to be sigma(i)(CH3I) = (48.2 +/- 7.9) Mb, in good agreement with previous electron impact measurements. Finally, the photoionization yield of the iodine atom in its ground state 2P(3/2) has been recorded using the synchrotron source and calibrated for the first time on an absolute cross section scale from our fixed 118.2 nm laser measurement, sigma(i)(I2P(3/2)) = 74(-23)(+33) Mb (95% confidence interval). The ionization curve of atomic iodine is in good agreement, although with slight variations, with the earlier relative ionization yield measured by Berkowitz et al. and is also compared to an earlier calculation of the iodine cross section by Robicheaux and Greene. It is demonstrated that, in the range of pyrolysis temperature used in this work, all the ionization cross sections are temperature-independent. Systematic care has been taken to include all uncertainty sources contributing to the final confidence intervals for the reported results.


Faraday Discussions | 2010

Very high resolution mass spectrometry of HCN polymers and tholins

V. Vuitton; Jean-Yves Bonnet; Maëliss Frisari; Roland Thissen; Eric Quirico; Bernard Schmitt; Léna Le Roy; Nicolas Fray; H. Cottin; Ella Sciamma-O'Brien; Nathalie Carrasco; Cyril Szopa

HCN polymers are complex organic solids resulting from the polymerization of hydrogen cyanide (HCN) molecules. They have been suspected to contribute to the refractory carbonaceous component of comets as well as the distributed CN sources in cometary atmospheres. Titans tholins are also organic compounds produced in a laboratory setting but result from the complex chemistry between N2 and CH4 induced by UV radiation or electric discharges. Some of these compounds have optical properties in the visible range fairly similar to those of Titans aerosols or those of the reddish surfaces of many icy satellites and small bodies. It has been proposed that HCN polymers are constituents of tholins but this statement has never received any clear demonstration. We report here on the comparative analysis of tholins and HCN polymers in order to definitely establish if the molecules identified in the HCN polymers are present in the tholins as well. First, we present a global comparison of HCN polymers with three kinds of tholins, using elemental analysis measurements, infrared spectroscopy and very high resolution mass spectrometry of their soluble fraction. We show that the chemical composition of the HCN polymers is definitely simpler than that of any of the tholins studied. Second, we focus on six ions representative of the composition of HCN polymers and using mass spectrometry (HRMS and MS/HRMS), we determine that these tholins contain at best a minor fraction of this kind of HCN polymers.


Journal of Chemical Physics | 2010

Knowledge-based probabilistic representations of branching ratios in chemical networks: The case of dissociative recombinations

Sylvain Plessis; Nathalie Carrasco; Pascal Pernot

Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information. As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.


Earth and Planetary Science Letters | 2014

Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

Maïa Kuga; Nathalie Carrasco; Bernard Marty; Yves Marrocchi; Sylvain Bernard; Thomas Rigaudier; Benjamin Fleury; Laurent Tissandier

The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young solar system and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan’s atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25 ‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among solar system objects and reservoirs. Extreme N isotope signatures in the solar system are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan’s atmosphere. In the Titans night side, 15N-depletion resulting from electron driven reactions would counterbalance photo-induced 15N enrichments occurring on the days side. Kinetic N isotope fractionation may also be responsible for the lower δ15N values of Archean sediments compared to Proterozoic-Phanerozoic values (Beaumont and Robert, 1999). We suggest that the low δ15N values of Archean organics are partly the result of abiotic synthesis of organics that occurred at that time, and that the subsequent development of the biosphere resulted in shifts of δ15N towards higher values.

Collaboration


Dive into the Nathalie Carrasco's collaboration.

Top Co-Authors

Avatar

Cyril Szopa

Institut Universitaire de France

View shared research outputs
Top Co-Authors

Avatar

Guy Cernogora

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed Mahjoub

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Gautier

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Thomas Gautier

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Edith Hadamcik

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Roland Thissen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge