Nathalie Charbonnel
SupAgro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Charbonnel.
BMC Genomics | 2010
Maxime Galan; Emmanuel Guivier; Gilles Caraux; Nathalie Charbonnel; Jean-François Cosson
BackgroundHigh-throughput sequencing technologies offer new perspectives for biomedical, agronomical and evolutionary research. Promising progresses now concern the application of these technologies to large-scale studies of genetic variation. Such studies require the genotyping of high numbers of samples. This is theoretically possible using 454 pyrosequencing, which generates billions of base pairs of sequence data. However several challenges arise: first in the attribution of each read produced to its original sample, and second, in bioinformatic analyses to distinguish true from artifactual sequence variation. This pilot study proposes a new application for the 454 GS FLX platform, allowing the individual genotyping of thousands of samples in one run. A probabilistic model has been developed to demonstrate the reliability of this method.ResultsDNA amplicons from 1,710 rodent samples were individually barcoded using a combination of tags located in forward and reverse primers. Amplicons consisted in 222 bp fragments corresponding to DRB exon 2, a highly polymorphic gene in mammals. A total of 221,789 reads were obtained, of which 153,349 were finally assigned to original samples. Rules based on a probabilistic model and a four-step procedure, were developed to validate sequences and provide a confidence level for each genotype. The method gave promising results, with the genotyping of DRB exon 2 sequences for 1,407 samples from 24 different rodent species and the sequencing of 392 variants in one half of a 454 run. Using replicates, we estimated that the reproducibility of genotyping reached 95%.ConclusionsThis new approach is a promising alternative to classical methods involving electrophoresis-based techniques for variant separation and cloning-sequencing for sequence determination. The 454 system is less costly and time consuming and may enhance the reliability of genotypes obtained when high numbers of samples are studied. It opens up new perspectives for the study of evolutionary and functional genetics of highly polymorphic genes like major histocompatibility complex genes in vertebrates or loci regulating self-compatibility in plants. Important applications in biomedical research will include the detection of individual variation in disease susceptibility. Similarly, agronomy will benefit from this approach, through the study of genes implicated in productivity or disease susceptibility traits.
Immunological Reviews | 2008
Günther Schönrich; Andreas Rang; Nina Lütteke; Martin J. Raftery; Nathalie Charbonnel; Rainer G. Ulrich
Summary: Hantaviruses are predominantly rodent‐borne pathogens, although recently novel shrew‐associated hantaviruses were found. Within natural reservoir hosts, hantairuses do not cause obvious pathogenetic effects; transmission to humans, however, can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome, depending on the virus species involved. This review is focussed on the recent knowledge on hantavirus‐induced immune responses in rodent reservoirs and humans and their impact on susceptibility, transmission, and outcome of hantavirus infections. In addition, this review incorporates a discussion on the potential role of direct cell‐virus interactions in the pathogenesis of hantavirus infections in humans. Finally, questions for further research efforts on the immune responses in potential hantavirus reservoir hosts and humans are summarized.
Molecular Ecology | 2006
Karine Berthier; Nathalie Charbonnel; Maxime Galan; Yannick Chaval; Jean-François Cosson
In cyclic populations, high genetic diversity is currently reported despite the periodic low numbers experienced by the populations during the low phases. Here, we report spatio‐temporal monitoring at a very fine scale of cyclic populations of the fossorial water vole (Arvicola terrestris) during the increasing density phase. This phase marks the transition from a patchy structure (demes) during low density to a continuous population in high density. We found that the genetic diversity was effectively high but also that it displayed a local increase within demes over the increasing phase. The genetic diversity remained relatively constant when considering all demes together. The increase in vole abundance was also correlated with a decrease of genetic differentiation among demes. Such results suggest that at the end of the low phase, demes are affected by genetic drift as the result of being small and geographically isolated. This leads to a loss of local genetic diversity and a spatial differentiation among demes. This situation is counterbalanced during the increasing phase by the spatial expansion of demes and the increase of the effective migration among differentiated demes. We provide evidences that in cyclic populations of the fossorial water voles, the relative influence of drift operating during low density populations and migration occurring principally while population size increases interacts closely to maintain high genetic diversity.
Molecular Ecology | 2007
Josef Bryja; Nathalie Charbonnel; Karine Berthier; Maxime Galan; Jean-François Cosson
Host–pathogen interactions are of particular interest in studies of the interplay between population dynamics and natural selection. The major histocompatibility complex (MHC) genes of demographically fluctuating species are highly suitable markers for such studies, because they are involved in initiating the immune response against pathogens and display a high level of adaptive genetic variation. We investigated whether two MHC class II genes (DQA1, DRB) were subjected to contemporary selection during increases in the density of fossorial water vole (Arvicola terrestris) populations, by comparing the neutral genetic structure of seven populations with that estimated from MHC genes. Tests for heterozygosity excess indicated that DQA1 was subject to intense balancing selection. No such selection operated on neutral markers. This pattern of selection became more marked with increasing abundance. In the low‐abundance phase, when populations were geographically isolated, both overall differentiation and isolation‐by‐distance were more marked for MHC genes than for neutral markers. Model‐based simulations identified DQA1 as an outlier (i.e. under selection) in a single population, suggesting the action of local selection in fragmented populations. The differences between MHC and neutral markers gradually disappeared with increasing effective migration between sites. In the high‐abundance year, DQA1 displayed significantly lower levels of overall differentiation than the neutral markers. This gene therefore displayed stronger homogenization than observed under drift and migration alone. The observed signs of selection were much weaker for DRB. Spatial and temporal fluctuations in parasite pressure and locus‐specific selection are probably the most plausible mechanisms underlying the observed changes in selection pattern during the demographic cycle.
Journal of Evolutionary Biology | 2008
J. Goüy de Bellocq; Nathalie Charbonnel; Serge Morand
Parasite‐mediated selection on major histocompatibility complex (MHC) genes has mainly been explored at the intraspecific level, although many molecular studies have revealed trans‐species polymorphism. Interspecific patterns of MHC diversity might reveal factors responsible for the long‐term evolution of MHC polymorphism. We hypothesize that host taxa harbouring high parasite diversity should exhibit high levels of MHC genetic diversity. We test this assumption using data on rodent species and their helminth parasites compiled from the literature. Controlling for similarity due to common descent, we present evidence indicating that high helminth species richness in rodent species is associated with increased MHC class II polymorphism. Our results are consistent with the idea that parasites sharing a long‐term coevolutionary history with their hosts are the agents of selection explaining MHC polymorphism.
Molecular Ecology | 2005
Karine Berthier; Maxime Galan; Jean-Christophe Foltête; Nathalie Charbonnel; Jean-François Cosson
Genetic structure can be strongly affected by landscape features and variation through time and space of demographic parameters such as population size and migration rate. The fossorial water vole (Arvicola terrestris) is a cyclic species characterized by large demographic fluctuations over short periods of time. The outbreaks do not occur everywhere at the same time but spread as a wave at a regional scale. This leads to a pattern of large areas (i.e. some hundreds of km2), each with different vole abundances, at any given time. Here, we describe the abundance and genetic structures in populations of the fossorial water vole. We use the data to try to understand how landscape and demographic features act to shape the genetic structure. The spatial variability of vole abundance was assessed from surface indices, collected in spring 2002 (April) in eastern central France. Genetic variability was analysed using eight microsatellite loci at 23 localities sampled between October 2001 and April 2002. We found some congruence between abundance and genetic structures. At a regional scale, the genetic disruptions were associated with both sharp relief and transition between an area of low abundance and another of high abundance. At a local scale, we observed a variation of the isolation‐by‐distance pattern according to the abundance level of vole populations. From these results we suggest that the dispersal pattern in cyclic rodent populations varies throughout the demographic cycle.
Journal of Evolutionary Biology | 2008
C. Tollenaere; Josef Bryja; Maxime Galan; P. Cadet; Julie Deter; Yannick Chaval; Karine Berthier; A. Ribas Salvador; Liina Voutilainen; Juha Laakkonen; Heikki Henttonen; Jean-François Cosson; Nathalie Charbonnel
We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co‐inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte‐DRB‐11 and Arte‐DRB‐15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite‐mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.
Physiological and Biochemical Zoology | 2008
Nathalie Charbonnel; Yannick Chaval; Karine Berthier; Julie Deter; Serge Morand; Rupert Palme; Jean-François Cosson
The stress response is initially adaptive, operating to maintain homeostasis. However, chronic long‐term exposure to stressors may have detrimental effects. We proposed that chronic stress may be a major factor in demographic vole cycles, inducing decline in high‐density populations. We monitored four populations of the fossorial water vole Arvicola scherman, which undergo pluriannual demographic cycles in the Jura Mountains (France). Sampling was conducted during the high densities and the decline. We measured fecal corticosterone metabolites (FCMs) to assess stress levels and injected phytohemagglutinin to estimate the cell‐mediated immune response. We demonstrated that stress levels increase between the high densities and the decline in most of the vole populations. At the individual level, FCM concentrations varied with reproductive status and body condition. During the outbreak, we observed significantly higher levels of FCM concentrations in nulliparous females than in females that had previously reproduced. Moreover, a significant negative correlation was observed between concentrations of FCMs and both immunocompetence and body condition during population decline. These results might reflect an impairment of the female reproductive capability in high densities and accelerated senescence affecting immune function during decline, both arising from chronic stress.
mSystems | 2016
Maxime Galan; Maria Razzauti; Emilie Bard; Maria Bernard; Carine Brouat; Nathalie Charbonnel; Alexandre Dehne-Garcia; Anne Loiseau; Caroline Tatard; Lucie Tamisier; Muriel Vayssier-Taussat; Helene Vignes; Jean-François Cosson
Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses. ABSTRACT The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 Mus musculusdomesticus, 189 Rattus rattus, 93 Mastomys natalensis, and 221 Mastomys erythroleucus, collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia. Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus, and Orientia have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable to continuous pathogen surveillance in the context of disease-monitoring programs. IMPORTANCE Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses.
BMC Evolutionary Biology | 2013
Alena Fornůsková; Michal Vinkler; Marie Pagès; Maxime Galan; Emmanuelle Jousselin; Frédérique Cerqueira; Serge Morand; Nathalie Charbonnel; Josef Bryja; Jean-François Cosson
BackgroundIn vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs).ResultsWe sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades.ConclusionsIn consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands.