Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Dhomen is active.

Publication


Featured researches published by Nathalie Dhomen.


Cell | 2010

Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF

Sonja J. Heidorn; Carla Milagre; Steven Whittaker; Arnaud Nourry; Ion Niculescu-Duvas; Nathalie Dhomen; Jahan Hussain; Js Reis-Filho; Caroline J. Springer; Catrin Pritchard; Richard Marais

Summary We describe a mechanism of tumorigenesis mediated by kinase-dead BRAF in the presence of oncogenic RAS. We show that drugs that selectively inhibit BRAF drive RAS-dependent BRAF binding to CRAF, CRAF activation, and MEK–ERK signaling. This does not occur when oncogenic BRAF is inhibited, demonstrating that BRAF inhibition per se does not drive pathway activation; it only occurs when BRAF is inhibited in the presence of oncogenic RAS. Kinase-dead BRAF mimics the effects of the BRAF-selective drugs and kinase-dead Braf and oncogenic Ras cooperate to induce melanoma in mice. Our data reveal another paradigm of BRAF-mediated signaling that promotes tumor progression. They highlight the importance of understanding pathway signaling in clinical practice and of genotyping tumors prior to administering BRAF-selective drugs, to identify patients who are likely to respond and also to identify patients who may experience adverse effects. PaperClip


The New England Journal of Medicine | 2012

RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.

Fei Su; Amaya Viros; Carla Milagre; Kerstin Trunzer; Gideon Bollag; Olivia Spleiss; Jorge S. Reis-Filho; Xiangju Kong; Richard C. Koya; Keith T. Flaherty; Paul B. Chapman; Min Jung Kim; Robert Hayward; Matthew Martin; Hong Yang; Qiongqing Wang; Holly Hilton; Julie S. Hang; Johannes Noe; Maryou B. Lambros; Felipe C. Geyer; Nathalie Dhomen; Ion Niculescu-Duvaz; Alfonso Zambon; Dan Niculescu-Duvaz; Natasha Preece; Lidia Robert; Nicholas Otte; Stephen Mok; Damien Kee

BACKGROUND Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. METHODS We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. RESULTS Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L-mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)-pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L-mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. CONCLUSIONS Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann-La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.).


Cancer Cell | 2009

Oncogenic Braf Induces Melanocyte Senescence and Melanoma in Mice

Nathalie Dhomen; Js Reis-Filho; Silvy da Rocha Dias; Robert Hayward; Kay Savage; Véronique Delmas; Lionel Larue; Catrin Pritchard; Richard Marais

We show here that inducible expression of Braf(V600E) off the endogenous Braf gene in mouse melanocytes stimulates skin hyperpigmentation and the appearance of nevi harboring senescent melanocytes. Additionally, approximately 70% of Braf(V600E) mice develop melanomas that reproduce many of the cardinal histological and molecular features of human melanoma and whose cells can colonize the lungs of nude mice. We show that the tumor suppressor p16(INK4a) is not required to induce melanocyte senescence and that its loss is not required for tumor progression, although it does regulate tumor penetrance and latency. Thus, we have developed a mouse model of melanoma driven by Braf(V600E) expressed at physiological levels that reflects the genetics and pathology of the human disease.


Hematology-oncology Clinics of North America | 2009

BRAF signaling and targeted therapies in melanoma.

Nathalie Dhomen; Richard Marais

The RAS/RAF/MEK/ERK signaling pathway has emerged as a major player in the induction and maintenance of melanoma, particularly the protein kinase BRAF, mutated in approximately 44% of melanoma cases. The availability of new drugs affecting the components of this pathway and pathways that may cooperate with MAPK signaling, means that targeted therapies are fast becoming a real option in the clinical management of melanoma. The authors discuss what they learned from clinical trials using first- and second-generation inhibitors to this pathway.


Nature | 2014

Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

Amaya Viros; Berta Sanchez-Laorden; Malin Pedersen; Simon J. Furney; Joel Rae; Kate Hogan; Sarah Ejiama; Maria Romina Girotti; Martin G. Cook; Nathalie Dhomen; Richard Marais

Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma. However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans. Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma.


Cancer Discovery | 2016

Application of Sequencing, Liquid Biopsies, and Patient-Derived Xenografts for Personalized Medicine in Melanoma

Maria Romina Girotti; Gabriela Gremel; Rebecca Lee; E. Galvani; Dominic G. Rothwell; Amaya Viros; Amit Kumar Mandal; Kok Haw Jonathan Lim; Grazia Saturno; Simon J. Furney; Franziska Baenke; Malin Pedersen; Jane Rogan; Jacqueline Swan; Matthew R. Smith; Alberto Fusi; Deemesh Oudit; Nathalie Dhomen; Ged Brady; Paul Lorigan; Caroline Dive; Richard Marais

UNLABELLED Targeted therapies and immunotherapies have transformed melanoma care, extending median survival from ∼9 to over 25 months, but nevertheless most patients still die of their disease. The aim of precision medicine is to tailor care for individual patients and improve outcomes. To this end, we developed protocols to facilitate individualized treatment decisions for patients with advanced melanoma, analyzing 364 samples from 214 patients. Whole exome sequencing (WES) and targeted sequencing of circulating tumor DNA (ctDNA) allowed us to monitor responses to therapy and to identify and then follow mechanisms of resistance. WES of tumors revealed potential hypothesis-driven therapeutic strategies for BRAF wild-type and inhibitor-resistant BRAF-mutant tumors, which were then validated in patient-derived xenografts (PDX). We also developed circulating tumor cell-derived xenografts (CDX) as an alternative to PDXs when tumors were inaccessible or difficult to biopsy. Thus, we describe a powerful technology platform for precision medicine in patients with melanoma. SIGNIFICANCE Although recent developments have revolutionized melanoma care, most patients still die of their disease. To improve melanoma outcomes further, we developed a powerful precision medicine platform to monitor patient responses and to identify and validate hypothesis-driven therapies for patients who do not respond, or who develop resistance to current treatments.


Cancer Discovery | 2014

The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα.

Berta Sanchez-Laorden; Kate O'Brien; Holly Brunton; Jennifer Ferguson; Helen S. Young; Nathalie Dhomen; Keith T. Flaherty; Dennie T. Frederick; Zachary A. Cooper; Jennifer A. Wargo; Richard Marais; Claudia Wellbrock

UNLABELLED Recently, the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune microenvironment can act as a source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma growth factor that provides resistance to MAPK pathway inhibitors through the lineage transcription factor MITF (microphthalmia transcription factor). Most strikingly, in BRAF-mutant melanomas of patients and BRAF(V600E) melanoma allografts, MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα signaling with IκB kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells but also the microenvironment. In summary, we identify the immune microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma. SIGNIFICANCE This study identifies the immune microenvironment as a source of resistance to MAPK pathway inhibitors through macrophage-derived TNFα, and reveals that in patients on treatment this source becomes reinforced. Inhibiting IκB kinase enhances the efficacy of MAPK pathway inhibitors, which identifies this approach as a potential novel strategy to improve targeted therapy in melanoma.


Cancer Research | 2010

A Mouse Model of Melanoma Driven by Oncogenic KRAS

Carla Milagre; Nathalie Dhomen; Felipe C. Geyer; Robert Hayward; Maryou B. Lambros; Jorge S. Reis-Filho; Richard Marais

The small G-protein NRAS is mutated in 22% of human melanomas, whereas the related proteins KRAS and HRAS are mutated in only 2% and 1% of melanomas, respectively. We have developed a mouse model of melanoma in which Cre recombinase/LoxP technology is used to drive inducible expression of (G12V)KRAS in the melanocytic lineage. The mice develop skin hyperpigmentation, nevi, and tumors that bear many of the cardinal histopathology features and molecular characteristics of human melanoma. These tumors invade and destroy the underlying muscles and cells derived from them can grow as subcutaneous tumors and colonize the lungs of nude mice. These data establish that oncogenic KRAS can be a founder event in melanomagenesis.


Molecular Oncology | 2016

Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

Franziska Baenke; Barbara Chaneton; Matthew Smith; Niels J. F. van den Broek; Kate Hogan; Haoran Tang; Amaya Viros; Matthew Martin; Laura Galbraith; Maria Romina Girotti; Nathalie Dhomen; Eyal Gottlieb; Richard Marais

BRAF inhibitors can extend progression‐free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first‐line setting.


Pigment Cell & Melanoma Research | 2010

Inducible expression of V600E Braf using tyrosinase-driven Cre recombinase results in embryonic lethality

Nathalie Dhomen; Silvy da Rocha Dias; Robert Hayward; Lesley Ogilvie; Douglas Hedley; Véronique Delmas; Afshan McCarthy; Deborah J. Henderson; Caroline J. Springer; Catrin Pritchard; Lionel Larue; Richard Marais

We recently demonstrated that expression of V600EBraf in mature mouse melanocytes induces melanoma. Here, we show that expression of V600EBraf using the tyrosinase promoter leads to an unexpected embryonic lethality, with the animals dying before, at, or shortly after birth. The mice suffer from a range of developmental defects in the skin, the brain, the eyes and the heart, tissues that are normally colonized by melanocytes. We show that the V600EBraf expressing cells are potential melanocytic precursors that are fully transformed, suggesting that V600EBraf stimulates proliferation and blocks differentiation of these cells. Our data suggests that the presence of these cells in the organs that are normally occupied by melanocytes leads to severe developmental disruption, resulting in catastrophic defects and leading to death of the individual.

Collaboration


Dive into the Nathalie Dhomen's collaboration.

Top Co-Authors

Avatar

Richard Marais

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Amaya Viros

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Lee

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Paul Lorigan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Amit Kumar Mandal

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grazia Saturno

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Malin Pedersen

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge