Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Fenner is active.

Publication


Featured researches published by Nathalie Fenner.


Nature | 2001

Export of organic carbon from peat soils

Chris Freeman; Chris D. Evans; Dt Monteith; B. Reynolds; Nathalie Fenner

Warmer conditions may be to blame for the exodus of peatland carbon to the oceans.


Nature | 2004

Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels

Chris Freeman; Nathalie Fenner; Nick Ostle; Hojeong Kang; D. J. Dowrick; Brian Reynolds; Maurice A. Lock; D. Sleep; Steve Hughes; J. Hudson

Peatlands represent a vast store of global carbon. Observations of rapidly rising dissolved organic carbon concentrations in rivers draining peatlands have created concerns that those stores are beginning to destabilize. Three main factors have been put forward as potential causal mechanisms, but it appears that two alternatives—warming and increased river discharge—cannot offer satisfactory explanations. Here we show that the third proposed mechanism, namely shifting trends in the proportion of annual rainfall arriving in summer, is similarly unable to account for the trend. Instead we infer that a previously unrecognized mechanism—carbon dioxide mediated stimulation of primary productivity—is responsible. Under elevated carbon dioxide levels, the proportion of dissolved organic carbon derived from recently assimilated carbon dioxide was ten times higher than that of the control cases. Concentrations of dissolved organic carbon appear far more sensitive to environmental drivers that affect net primary productivity than those affecting decomposition alone.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Atmospheric nitrogen deposition promotes carbon loss from peat bogs

Luca Bragazza; Chris Freeman; Timothy G. Jones; Håkan Rydin; Juul Limpens; Nathalie Fenner; Tim Ellis; Renato Gerdol; Michal Hájek; Tomáš Hájek; Paola Iacumin; Lado Kutnar; Teemu Tahvanainen; Hannah Toberman

Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from ≈0.2 to 2 g·m−2·yr−1. We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.


FEMS Microbiology Ecology | 2008

Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil

Hannah Toberman; Chris Freeman; Chris D. Evans; Nathalie Fenner; Rebekka R. E. Artz

Natural moisture limitation during summer drought can constitute a stress for microbial communities in soil. Given globally predicted increases in drought frequency, there is an urgent need for a greater understanding of the effects of drought events on soil microbial processes. Using a long-term field-scale drought manipulation experiment at Clocaenog, Wales, UK, we analysed fungal community dynamics, using internal transcribed spacer-denaturing gradient gel electrophoresis (DGGE), over a 1-year period in the 6th year of drought manipulation. Ambient seasonality was found to be the dominant factor driving variation in fungal community dynamics. The summer drought manipulation resulted in a significant decline in the abundance of dominant fungal species, both independently of, and in interaction with, this seasonal variation. Furthermore, soil moisture was significantly correlated with the changes in fungal diversity over the drought manipulation period. While the relationship between species diversity and functional diversity remains equivocal, phenol oxidase activity was decreased by the summer drought conditions and there was a significant correlation with the decline of DGGE band richness among the most dominant fungal species during the drought season. Climatically driven events such as droughts may have significant implications for fungal community diversity and therefore, have the potential to interfere with crucial ecosystem processes, such as organic matter decomposition.


Nature | 2002

Terrestrial export of organic carbon: Climate change (Communication arising)

Chris D. Evans; Chris Freeman; Dt Monteith; B. Reynolds; Nathalie Fenner

Tranvik and Jansson question our proposed link between temperature and DOC export, on the basis of spatial patterns of DOC concentration, confounding effects of hydrology, and apparently conflicting observations from other regions.


Hydrobiologia | 2011

Decomposition ‘hotspots’ in a rewetted peatland: implications for water quality and carbon cycling

Nathalie Fenner; Robert J. Williams; Hannah Toberman; Steve Hughes; Brian Reynolds; Chris Freeman

Restoration of drained peatlands has been promoted to reduce gaseous and aquatic carbon losses; however, there are conflicting reports as to its effectiveness. Here we report “hotspots” of organic matter decomposition as a result of rewetting a drained peatland in Wales, at the field-scale, in the medium/long-term with implications for water quality and greenhouse gas emissions. Low soil moisture levels, that characterise these hotspots before rewetting, regenerate electron acceptors and provide carbon and nutrients which stimulate phenol oxidase-mediated release of phenolic compounds from the peat matrix upon waterlogging. Electron acceptors are then consumed sequentially, eventually favouring CH4 production and rising pH, despite accumulating SO4 levels. The latter two processes promote positive feedback to increased phenol oxidase activities and the release of even more dissolved organic carbon (DOC) and CH4 from the peat matrix. Hotspot formation therefore represents an inextricably linked physico-chemical and biological positive feedback mechanism. Such hotspots account for a large proportion of the mean increase in carbon loss due to rewetting of this naturally drained peatland (e.g. at maximum mean DOC concentrations: with hotspot 997%; without hotspot 102%) and are not “outliers” but important drivers of biogeochemical fluxes that should be included in budgets for carbon and other elements (e.g. sulphur). As such, understanding hotspot formation should allow improved management strategies for restoration, carbon stocks, drinking water quality and even future geo-engineering options in the face of changes in climate and atmospheric chemistry.


Philosophical Transactions of the Royal Society A | 2012

Peatland geoengineering: an alternative approach to terrestrial carbon sequestration

Chris Freeman; Nathalie Fenner; Anil H. Shirsat

Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO2 emissions, and already play a role in minimizing our impact on Earth’s climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2–3% of the Earth’s landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an ‘enzymic latch’ on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.


Science of The Total Environment | 2015

Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site

Jennifer Rhymes; Laurence Jones; Dan Lapworth; Deborah White; Nathalie Fenner; James E. McDonald; Tracy L. Perkins

Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios<0.4Ramanunits (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact.


Science of The Total Environment | 2014

Evidence for sensitivity of dune wetlands to groundwater nutrients.

Jennifer Rhymes; H. Wallace; Nathalie Fenner; Laurence Jones

Dune slacks are seasonal wetlands, high in biodiversity, which experience considerable within-year and between-year variations in water-table. They are subject to many pressures including climate change, land use change and eutrophication. Despite their biological importance and the threats facing them, the hydrological and nutrient parameters that influence their soil properties and biodiversity are poorly understood and there have been no empirical studies to date testing for biological effects in dune systems resulting from groundwater nutrients at low concentrations. In this study we examined the impact of groundwater nutrients on water chemistry, soil chemistry and vegetation composition of dune slacks at three distance classes (0-150 m, 150-300 m, 300-450 m) away from known (off-site) nutrient sources at Aberffraw dunes in North Wales, whilst accounting for differences in water-table regime. Groundwater nitrate and dissolved inorganic nitrogen (DIN) and soil nitrate and nitrite all had significantly higher concentrations closest to the nutrient source. Multivariate analysis showed that although plant species composition within this site was primarily controlled by water table depth and water table fluctuation, nitrogen from groundwater also influenced species composition, independently of water table and soil development. A model containing all hydrological parameters explained 17% of the total species variance; an additional 7% was explained following the addition of NO3 to this model. Areas exposed to elevated, but still relatively low, groundwater nutrient concentrations (mean 0.204 mg/L+/-0.091 of DIN) had greater abundance of nitrophilous species and fewer basipholous species than in areas with lower concentrations. This shows that clear biological impact occurs below previously suggested DIN thresholds of 0.20-0.40 (mg/L).


Water Environment Research | 2016

Influence of Water Table Depth on Pore Water Chemistry and Trihalomethane Formation Potential in Peatlands

Rachel Gough; Peter J. Holliman; Nathalie Fenner; Mike Peacock; Chris Freeman

Drained peatland catchments are reported to produce more colored, dissolved organic carbon (DOC)-rich water, presenting problems for potable water treatment. The blocking of peatland drainage ditches to restore the water table is increasingly being considered as a strategy to address this deterioration in water quality. However, the effect of ditch blocking on the potential of DOC to form trihalomethanes (THMs) has not been assessed. In this study, the effect of peat rewetting on pore water DOC concentration and characteristics (including THM formation potential [THMFP]) was assessed over 12 months using peat cores collected from two drained peatland sites. The data show little evidence of differences in DOC concentration or characteristics between the different treatments. The absence of any difference in the THMFP of pore water between treatments suggests that, in the short term at least, ditch blocking may not have an effect on the THMFP of waters draining peatland catchments.

Collaboration


Dive into the Nathalie Fenner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris D. Evans

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge