Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Fortin is active.

Publication


Featured researches published by Nathalie Fortin.


Applied and Environmental Microbiology | 2010

Detection of Microcystin-Producing Cyanobacteria in Missisquoi Bay, Quebec, Canada, Using Quantitative PCR

Nathalie Fortin; Rocio Aranda-Rodriguez; Hongmei Jing; Frances R. Pick; David F. Bird; Charles W. Greer

ABSTRACT Toxic cyanobacterial blooms, as well as their increasing global occurrence, pose a serious threat to public health, domestic animals, and livestock. In Missisquoi Bay, Lake Champlain, public health advisories have been issued from 2001 to 2009, and local microcystin concentrations found in the lake water regularly exceeded the Canadian drinking water guideline of 1.5 μg liter−1. A quantitative PCR (Q-PCR) approach was developed for the detection of blooms formed by microcystin-producing cyanobacteria. Primers were designed for the β-ketoacyl synthase (mcyDKS) and the first dehydratase domain (mcyDDH) of the mcyD gene, involved in microcystin synthesis. The Q-PCR method was used to track the toxigenic cyanobacteria in Missisquoi Bay during the summers of 2006 and 2007. Two toxic bloom events were detected in 2006: more than 6.5 × 104 copies of the mcyDKS gene ml−1 were detected in August, and an average of 4.0 × 104 copies ml−1 were detected in September, when microcystin concentrations were more than 4 μg liter−1 and approximately 2 μg liter−1, respectively. Gene copy numbers and total microcystin concentrations (determined by enzyme-linked immunosorbent assay [ELISA]) were highly correlated in the littoral (r = 0.93, P < 0.001) and the pelagic station (r = 0.87, P < 0.001) in 2006. In contrast to the situation in 2006, a cyanobacterial bloom occurred only in late summer-early fall of 2007, reaching only 3 × 102mcyDKS copies ml−1, while the microcystin concentration was barely detectable. The Q-PCR method allowed the detection of microcystin-producing cyanobacteria when toxins and toxigenic cyanobacterial abundance were still below the limit of detection by high-pressure liquid chromatography (HPLC) and microscopy. Toxin gene copy numbers grew exponentially at a steady rate over a period of 7 weeks. Onshore winds selected for cells with a higher cell quota of microcystin. This technique could be an effective approach for the routine monitoring of the most at-risk water bodies.


Science of The Total Environment | 2014

Prospective study of acute health effects in relation to exposure to cyanobacteria.

Benoît Lévesque; Marie-Christine Gervais; Pierre Chevalier; Denis Gauvin; Elhadji Anassour-Laouan-Sidi; Suzanne Gingras; Nathalie Fortin; Geneviève Brisson; Charles W. Greer; David F. Bird

We conducted a study to investigate the relationship between exposure to cyanobacteria and microcystins and the incidence of symptoms in humans living in close proximity to lakes affected by cyanobacteria. The design was a prospective study of residents living around three lakes (Canada), one of which has a water treatment plant supplying potable water to local residents. Participants had to keep a daily journal of symptoms and record contact (full or limited) with the water body. Samples were collected to document cyanobacteria and microcystin concentrations. Symptoms potentially associated with cyanobacteria (gastrointestinal: 2 indices (GI1: diarrhea or abdominal pain or nausea or vomiting; GI2: diarrhea or vomiting or [nausea and fever] or [abdominal cramps and fever]); upper and lower respiratory tract; eye; ear; skin; muscle pain; headaches; mouth ulcers) were examined in relation with exposure to cyanobacteria and microcystin by using Poisson regression. Only gastrointestinal symptoms were associated with recreational contact. Globally, there was a significant increase in adjusted relative risk (RR) with higher cyanobacterial cell counts for GI2 (<20,000 cells/mL: RR=1.52, 95% CI=0.65-3.51; 20,000-100,000 cells/mL: RR=2.71, 95% CI=1.02-7.16; >100,000 cells/mL: RR=3.28, 95% CI=1.69-6.37, p-trend=0.001). In participants who received their drinking water supply from a plant whose source was contaminated by cyanobacteria, an increase in muscle pain (RR=5.16; 95% CI=2.93-9.07) and gastrointestinal (GI1: RR=3.87; 95% CI=1.62-9.21; GI2: RR=2.84; 95% CI=0.82-9.79), skin (RR=2.65; 95% CI=1.09-6.44) and ear symptoms (RR=6.10; 95% CI=2.48-15.03) was observed. The population should be made aware of the risks of gastrointestinal symptoms associated with contact (full or limited) with cyanobacteria. A risk management plan is needed for water treatment plants that draw their water from a source contaminated with cyanobacteria.


Applied and Environmental Microbiology | 2011

Effect of Light Intensity on the Relative Dominance of Toxigenic and Nontoxigenic Strains of Microcystis aeruginosa

Susan LeBlanc Renaud; Frances R. Pick; Nathalie Fortin

ABSTRACT In aquatic ecosystems, the factors that regulate the dominance of toxin-producing cyanobacteria over non-toxin-producing strains of the same species are largely unknown. One possible hypothesis is that limiting resources lead to the dominance of the latter because of the metabolic costs associated with toxin production. In this study, we tested the effect of light intensity on the performance of a microcystin-producing strain of Microcystis aeruginosa (UTCC 300) when grown in mixed cultures with non-microcystin-producing strains with similar intrinsic growth rates (UTCC 632 and UTCC 633). The endpoints measured included culture growth rates, microcystin concentrations and composition, and mcyD gene copy numbers determined using quantitative PCR (Q-PCR). In contrast to the predicted results, under conditions of low light intensity (20 μmol·m−2·s−1), the toxigenic strain became dominant in both of the mixed cultures based on gene copy numbers and microcystin concentrations. When grown under conditions of high light intensity (80 μmol·m−2·s−1), the toxigenic strain still appeared to dominate over nontoxigenic strain UTCC 632 but less so over strain UTCC 633. Microcystins may not be so costly to produce that toxigenic cyanobacteria are at a disadvantage in competition for limiting resources.


Applied and Environmental Microbiology | 2006

Influence of nutrient inputs, hexadecane, and temporal variations on denitrification and community composition of river biofilms

Martin R. Chénier; Danielle Beaumier; Nathalie Fortin; Réal Roy; Brian T. Driscoll; John R. Lawrence; Charles W. Greer

ABSTRACT Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P ≤ 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.


Bioremediation Journal | 2003

Indigenous Sediment Microbial Activity in Response to Nutrient Enrichment and Plant Growth Following a Controlled Oil Spill on a Freshwater Wetland

Charles W. Greer; Nathalie Fortin; R. Roy; Lyle G. Whyte; Kenneth Lee

The population density and activity of a microbial community associated with the sediment and rhizosphere of an intertidal freshwater wetland dominated by Scirpus pungens was monitored before and following the application of weathered Mesa light crude oil and fertilizers. The influence of nutrient enrichment (fertilizers) and plant growth on oil degradation rates was determined from the resulting data. The study plots (four blocks of replicates) were subjected to five treatments: oil only (natural attenuation); oil plus ammonium nitrate and phosphate, with regular cropping of the plants; oil plus ammonium nitrate and phosphate; oil plus sodium nitrate and phosphate; no oil, ammonium nitrate and phosphate. The plots were regularly monitored in the field for gas production (carbon dioxide and nitrous oxide), and samples were collected for laboratory analysis of denitrification activity, aliphatic and aromatic hydrocarbon degradation activity, and total heteroptrophic bacteria. The viable bacterial population density increased during the first 4 weeks in oiled and unoiled experimental plots that were fertilized. In contrast, population densities in untreated areas remained relatively unchanged throughout the monitoring period. The microbial population demonstrated a rapid and sustained increase in naphthalene mineralization activity in plots that were both fertilized and oiled. Hexadecane mineralization activity increased in response to fertilizer application, with ammonium nitrate causing a larger increase than sodium nitrate. A very significant difference observed in the mineralization of hexadecane was that the surface sediments were much more active than the subsurface sediments. This difference became even more pronounced in the second year of monitoring, even though the treatment regime had been discontinued. This compartmentalization of mineralization activity was not observed for naphthalene. Following fertilizer application, field and laboratory evaluation of nitrogen metabolism in the sediments indicated significant denitrification activity that was not adversely affected by oiling. The results demonstrated that the application of fertilizers stimulated the activities of indigenous hydrocarbon-degrading and denitrifying bacteria, and the presence of oil either enhanced or had no detrimental effect on these activities. As a remediation strategy, the application of fertilizers to a wetland shoreline following an oil spill would promote the growth of indigenous plants and their associated microbial flora, resulting in increased metabolic activity and the potential for increased oil degradation activity.


FEMS Microbiology Ecology | 2016

Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)

Marie-Ève Garneau; Christine Michel; Guillaume Meisterhans; Nathalie Fortin; Thomas King; Charles W. Greer; Kenneth Lee

The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at -1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by (3)H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides.


The ISME Journal | 2017

Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course

Nicolas Tromas; Nathalie Fortin; Larbi Bedrani; Yves Terrat; Pedro Cardoso; David F. Bird; Charles W. Greer; B. Jesse Shapiro

Cyanobacterial blooms occur in lakes worldwide, producing toxins that pose a serious public health threat. Eutrophication caused by human activities and warmer temperatures both contribute to blooms, but it is still difficult to predict precisely when and where blooms will occur. One reason that prediction is so difficult is that blooms can be caused by different species or genera of cyanobacteria, which may interact with other bacteria and respond to a variety of environmental cues. Here we used a deep 16S amplicon sequencing approach to profile the bacterial community in eutrophic Lake Champlain over time, to characterise the composition and repeatability of cyanobacterial blooms, and to determine the potential for blooms to be predicted based on time course sequence data. Our analysis, based on 135 samples between 2006 and 2013, spans multiple bloom events. We found that bloom events significantly alter the bacterial community without reducing overall diversity, suggesting that a distinct microbial community—including non-cyanobacteria—prospers during the bloom. We also observed that the community changes cyclically over the course of a year, with a repeatable pattern from year to year. This suggests that, in principle, bloom events are predictable. We used probabilistic assemblages of OTUs to characterise the bloom-associated community, and to classify samples into bloom or non-bloom categories, achieving up to 92% classification accuracy (86% after excluding cyanobacterial sequences). Finally, using symbolic regression, we were able to predict the start date of a bloom with 78–92% accuracy (depending on the data used for model training), and found that sequence data was a better predictor than environmental variables.


Ecotoxicology and Environmental Safety | 2015

Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin.

Ehsan Maghsoudi; Nathalie Fortin; Charles W. Greer; Sung Vo Duy; Paul B. Fayad; Sébastien Sauvé; Michèle Prévost; Sarah Dorner

The effects of particulate attached bacteria (PAB) and phycocyanin on the simultaneous biodegradation of a mixture of microcystin-LR, YR, LY, LW, LF and cylindrospermopsin (CYN) was assessed in clarifier sludge of a drinking water treatment plant (DWTP) and in a drinking water source. The biomass from lake water and clarifier sludge was able to degrade all microcystins (MCs) at initial concentrations of 10µgL(-1) with pseudo-first order reaction half-lives ranging from 2.3 to 8.8 days. CYN was degraded only in the sludge with a biodegradation rate of 1.0×10(-1)d(-1) and a half-life of 6.0 days. This is the first study reporting multiple MCs and CYN biodegradation in the coagulation-flocculation sludge of a DWTP. The removal of PAB from the lake water and the sludge prolonged the lag time substantially, such that no biodegradation of MCLY, LW and LF was observed within 24 days. Biodegradation rates were shown to increase in the presence of C-phycocyanin as a supplementary carbon source for indigenous bacteria, a cyanobacterial product that accompanies cyanotoxins during cyanobacteria blooms. MCs in mixtures degraded more slowly (or not at all) than if they were degraded individually, an important outcome as MCs in the environment are often present in mixtures. The results from this study showed that the majority of the bacterial biomass responsible for the biodegradation of cyanotoxins is associated with particles or biological flocs and there is a potential for extreme accumulation of cyanotoxins within the DWTP during a transient bloom.


The ISME Journal | 2017

Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria

Julien Tremblay; Etienne Yergeau; Nathalie Fortin; Susan E. Cobanli; Miria Elias; Thomas King; Kenneth Lee; Charles W. Greer

Application of chemical dispersants to oil spills in the marine environment is a common practice to disperse oil into the water column and stimulate oil biodegradation by increasing its bioavailability to indigenous bacteria capable of naturally metabolizing hydrocarbons. In the context of a spill event, the biodegradation of crude oil and gas condensate off eastern Canada is an essential component of a response strategy. In laboratory experiments, we simulated conditions similar to an oil spill with and without the addition of chemical dispersant under both winter and summer conditions and evaluated the natural attenuation potential for hydrocarbons in near-surface sea water from the vicinity of crude oil and natural gas production facilities off eastern Canada. Chemical analyses were performed to determine hydrocarbon degradation rates, and metagenome binning combined with metatranscriptomics was used to reconstruct abundant bacterial genomes and estimate their oil degradation gene abundance and activity. Our results show important and rapid structural shifts in microbial populations in all three different oil production sites examined following exposure to oil, oil with dispersant and dispersant alone. We found that the addition of dispersant to crude oil enhanced oil degradation rates and favored the abundance and expression of oil-degrading genes from a Thalassolituus sp. (that is, metagenome bin) that harbors multiple alkane hydroxylase (alkB) gene copies. We propose that this member of the Oceanospirillales group would be an important oil degrader when oil spills are treated with dispersant.


Public Health | 2016

Exposure to cyanobacteria: acute health effects associated with endotoxins.

Benoît Lévesque; M.-C. Gervais; P. Chevalier; Denis Gauvin; Elhadji Anassour-Laouan-Sidi; Suzanne Gingras; Nathalie Fortin; Geneviève Brisson; Charles W. Greer; David F. Bird

B. L evesque , M.-C. Gervais , P. Chevalier , D. Gauvin , E. Anassour-Laouan-Sidi , S. Gingras , N. Fortin , G. Brisson , C. Greer , D. Bird e a Universit e Laval, Facult e de m edecine, D epartement de m edecine sociale et pr eventive, 945 Ave. Wolfe, Qu ebec City, Qu ebec G1V 5B3, Canada b Institut national de sant e publique du Qu ebec, 945 Ave. Wolfe, Qu ebec City, Qu ebec G1V 5B3, Canada c Centre de recherche du Centre hospitalier universitaire (CHU) de Qu ebec, Sant e publique et pratiques optimales en sant e, Edifice Delta 2Bureau 600, 2875 Blv. Laurier, Qu ebec City, Qu ebec G1V 2M2, Canada d National Research Council Canada, Energy, Mining and Environment, 6100 Royalmount Avenue, Montr eal, Qu ebec H4P 2R2, Canada e Universit e du Qu ebec a Montr eal, D epartement des sciences biologiques, Facult e des sciences, Case postale 8888, Succ Centre-ville, Montr eal, Qu ebec H3C 3P8, Canada

Collaboration


Dive into the Nathalie Fortin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David F. Bird

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Lee

Bedford Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Nicolas Tromas

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Juck

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ehsan Maghsoudi

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge