Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Le Roy is active.

Publication


Featured researches published by Nathalie Le Roy.


Paleobiology | 2012

Paleohistological estimation of bone growth rate in extinct archosaurs

Jorge Cubo; Nathalie Le Roy; Cayetana Martinez-Maza; Laetitia Montes

Abstract The clade Archosauria contains two very different sister groups in terms of diversity (number of species) and disparity (phenotypic variation): Crurotarsi (taxa more closely related to crocodiles than to birds) and Ornithodira (pterosaurs and dinosaurs including birds). The extant species of Crurotarsi may constitute a biased sample of past biodiversity regarding growth patterns and metabolic rates. Bone histological characters can be conserved over hundreds of millions of years in the fossil record and potentially contain information about individual age at death, age at sexual maturity, bone growth rates, and basal metabolic rates of extinct vertebrates. Using a sample of extant amniotes, we have constructed a paleobiological model to estimate bone growth rate from bone histological traits. Cross-validation tests show that this model is reliable. We then used it to estimate bone growth rates in a sample of extinct archosaurs including Crurotarsi and Ornithodira. After testing for phylogenetic signal, optimization of femoral growth rates through squared change parsimony onto a time-calibrated tree of amniotes shows two divergent evolutionary trends: whereas bone growth rates increase from the last common ancestor of Ornithodira to extant birds, they decrease from the last common ancestor of Crurotarsi to extant crocodiles. However, we conclude, on the basis of recent evidence for unidirectional airflow in the lungs of alligators, that crocodiles may have retained the capacity of growing at high rates.


Journal of Molecular Evolution | 2011

Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus

Benjamin Marie; Nathalie Le Roy; Isabelle Zanella-Cléon; Michel Becchi; Frédéric Marin

Shell matrix proteins (SMPs) that are embedded within calcified layers of mollusc shells are believed to play an essential role in controlling the biomineral synthesis and in increasing its mechanical properties. Among the wide diversity of mollusc shell textures, nacro-prismatic shells represent a tremendous opportunity for the investigation of the SMP evolution. Indeed, nacro-prismatic texture appears early in Cambrian molluscs and is still present in the shell of some bivalves, gastropods, cephalopods and very likely also, of some monoplacophorans. One key question is to know whether these shells are constructed from similar matrix protein assemblages, i.e. whether they share a common origin. Most of the molecular data published so far are restricted to two genera, the bivalve Pinctada and the gastropod Haliotis. The shell protein content of these two genera are clearly different, suggesting independent origins or considerable genetic drift from a common ancestor. In order to describe putatively conserved mollusc shell proteins, here we have investigated the SMP set of a new bivalve model belonging to another genera, the edible mussel Mytilus, using an up-to-date proteomic approach based on the interrogation of more than 70,000 EST sequences, recently available from NCBI public databases. We describe nine novel SMPs, among which three are completely novel, four are homologues of Pinctada SMPs and two are very likely homologues of Haliotis SMPs. This latter result constitutes the first report of conserved SMPs between bivalves and gastropods. More generally, our data suggest that mollusc SMP set may follow a mosaic pattern within the different mollusc models (Mytilus, Pinctada, Haliotis). We discuss the function of such proteins in calcifying matrices, the molecular evolution of SMP genes and the origin of mollusc nacro-prismatic SMPs.


Frontiers in Zoology | 2014

The evolution of metazoan α-carbonic anhydrases and their roles in calcium carbonate biomineralization

Nathalie Le Roy; Daniel J. Jackson; Benjamin Marie; Paula Ramos-Silva; Frédéric Marin

The carbonic anhydrase (CA; EC 4.2.1.1) superfamily is a class of ubiquitous metallo-enzymes that catalyse the reversible hydration of carbon dioxide. The α-CA family, present in all metazoan clades, is a key enzyme involved in a wide range of physiological functions including pH regulation, respiration, photosynthesis, and biocalcification. This paper reviews the evolution of the α-CA family, with an emphasis on metazoan α-CA members involved in biocalcification. Phylogenetic analyses reveal a complex evolutionary history of α-CAs, and suggest α-CA was independently co-opted into a variety of skeleton forming roles (e.g. as a provider of HCO3- ions, a structural protein, a nucleation activator, etc.) in multiple metazoan lineages. This evolutionary history is most likely the result of multiple gene duplications coupled with the insertion of repetitive or non-repetitive low-complexity domains (RLCDs/LCDs). These domains, of largely unknown function, appear to be lineage-specific, and provide further support for the hypothesis of independent recruitment of α-CAs to diverse metazoan biocalcification processes. An analysis of α-CA sequences associated with biocalcification processes indicates that the domains involved in the activity and conformation of the active site are extremely conserved among metazoans.


ChemBioChem | 2010

Proteomic Analysis of the Acid-Soluble Nacre Matrix of the Bivalve Unio pictorum: Detection of Novel Carbonic Anhydrase and Putative Protease Inhibitor Proteins

Benjamin Marie; Isabelle Zanella-Cléon; Nathalie Le Roy; Michel Becchi; Gilles Luquet; Frédéric Marin

The matrix extracted from mollusc shell nacre is a mixture of proteins and glycoproteins that is thought to play a major role in controlling biomineral synthesis and in increasing its mechanical properties. We investigated the nacreous shell of the freshwater mussel Unio pictorum, to which we applied a proteomics approach adapted to mollusc shell proteins. On one hand, the acid‐soluble nacre matrix was fractionated by SDS‐PAGE and the five main protein bands (P95, P50, P29, P16, and P12) were digested with trypsin and analyzed by nanoLC‐MS/MS followed by de novo sequencing. On the other hand, the acid‐soluble nacre matrix was analyzed in a similar manner, without any preliminary fractionation. In total, we obtained about 140 peptides, of between 9 and 21 residues, as well as several shorter peptides. Interestingly, it appears that the different protein bands share several identical peptides; this has implications for the underlying genetic machinery that synthesizes nacre proteins. Homology searches against sequences in the Swiss‐Prot protein database and the 800 000 mollusc expressed sequence tag database were performed, but surprisingly, only a few obvious homologies were established. Among the peptides that match with known sequences, some from P50 and P16/P12 proteins align with carbonic anhydrase (CA) and with the protease inhibitor, respectively. The evolutionary implications of our findings are discussed.


Journal of Experimental Zoology | 2012

Identification of Two Carbonic Anhydrases in the Mantle of the European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): Phylogenetic Implications

Nathalie Le Roy; Benjamin Marie; Béatrice Gaume; Nathalie Guichard; Sidney Delgado; Isabelle Zanella-Cléon; Michel Becchi; Stéphanie Auzoux-Bordenave; Jean-Yves Sire; Frédéric Marin

Carbonic anhydrases (CAs) represent a diversified family of metalloenzymes that reversibly catalyze the hydration of carbon dioxide. They are involved in a wide range of functions, among which is the formation of CaCO(3) skeletons in metazoans. In the shell-forming mantle tissues of mollusks, the location of the CA catalytic activity is elusive and gives birth to contradicting views. In the present paper, using the European abalone Haliotis tuberculata, a key model gastropod in biomineralization studies, we identified and characterized two CAs (htCA1 and htCA2) that are specific of the shell-forming mantle tissue. We analyzed them in a phylogenetic context. Combining various approaches, including proteomics, activity tests, and in silico analyses, we showed that htCA1 is secreted but is not incorporated in the organic matrix of the abalone shell and that htCA2 is transmembrane. Together with previous studies dealing with molluskan CAs, our findings suggest two possible modes of action for shell mineralization: the first mode applies to, for example, the bivalves Unio pictorum and Pinctada fucata, and involves a true CA activity in their shell matrix; the second mode corresponds to, for example, the European abalone, and does not include CA activity in the shell matrix. Our work provides new insight on the diversity of the extracellular macromolecular tools used for shell biomineralization study in mollusks.


Zoologica Scripta | 2013

Phylogenetic signal in bone histology of amniotes revisited

Lucas J. Legendre; Nathalie Le Roy; Cayetana Martinez-Maza; Laëtitia Montes; Michel Laurin; Jorge Cubo

Legendre, L, Le Roy, N, Martinez‐Maza, C, Montes, L, Laurin, M & Cubo, J. (2012). Phylogenetic signal in bone histology of amniotes revisited. —Zoologica Scripta, 42, 44–53.


ChemBioChem | 2012

Novel molluskan biomineralization proteins retrieved from proteomics: a case study with Upsalin.

Paula Ramos-Silva; Sana Benhamada; Nathalie Le Roy; Benjamin Marie; Nathalie Guichard; Isabelle Zanella-Cléon; Laurent Plasseraud; Marion Corneillat; Gérard Alcaraz; Jaap A. Kaandorp; Frédéric Marin

The formation of the molluskan shell is regulated by an array of extracellular proteins secreted by the calcifying epithelial cells of the mantle. These proteins remain occluded within the recently formed biominerals. To date, many shell proteins have been retrieved, but only a few of them, such as nacreins, have clearly identified functions. In this particular case, by combining molecular biology and biochemical approaches, we performed the molecular characterization of a novel protein that we named Upsalin, associated with the nacreous shell of the freshwater mussel Unio pictorum. The full sequence of the upsalin transcript was obtained by RT‐PCR and 5′/3′ RACE, and the expression pattern of the transcript was studied by PCR and qPCR. Upsalin is a 12 kDa protein with a basic theoretical pI. The presence of Upsalin in the shell was demonstrated by extraction of the acetic‐acid‐soluble nacre matrix, purification of a shell protein fraction by mono‐dimensional preparative SDS‐PAGE, and by submitting this fraction, after trypsic digestion, to nano‐LC‐MS/MS. In vitro experiments with the purified protein showed that it interferes poorly with the precipitation of calcium carbonate. Homology searches also could not affiliate Upsalin to any other protein of known function, leaving open the question of its exact role in shell formation. An antibody raised against an immunogenic peptide of Upsalin was found to be specific to this protein and was subsequently assayed for immunogold localization of the target protein in the shell, revealing the ubiquitous presence of Upsalin in the nacreous and prismatic layers. Recently, with the application of high‐throughput proteomic studies to shells, the number of candidate proteins without clear functions has been increasing exponentially. The Upsalin example highlights the crucial need, for the scientific community dealing with biomineralization in general, to dedicate the coming years to designing experimental approaches, such as gene silencing, that focus on the functions of mineral‐associated proteins.


biomolecules | 2012

Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda)

Gilles Luquet; María S. Fernández; Aïcha Badou; Nathalie Guichard; Nathalie Le Roy; Marion Corneillat; Gérard Alcaraz; José Luis Arias

Crustaceans have to cyclically replace their rigid exoskeleton in order to grow.Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca): three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components.


Key Engineering Materials | 2014

Synthesis of Calcium Carbonate Biological Materials: How Many Proteins are Needed?

Frédéric Marin; Nathalie Le Roy; Benjamin Marie; Paula Ramos-Silva; Stephan E. Wolf; Sana Benhamada; Nathalie Guichard; Françoise Immel

In Nature, calcium carbonate biomineralizations are the most abundant mineralized structures of biological origin. Because many exhibit remarkable characteristics, several attempts have been made to use them as substitution materials for bone reconstruction or as models for generating biomimetic composites that exhibit tailored properties. CaCO3 biomineralizations contain small amounts of amalgamate of proteins and polysaccharides that are secreted during the calcification process. They contribute to control the morphology of the crystallites and to spatially organize them in well-defined microstructures. These macromolecules, collectively defined as the skeletal matrix, have been the focus of a large number of studies aiming at synthesizing in vitro biomimetic materials, according to a bottom-up approach. However, recent proteomic investigations performed on the organic matrices associated to mollusc shells or to coral skeletons have quashed our hopes to generate, with only few macromolecular ingredients, biomimetic materials with properties approaching to those of natural biominerals. As a mean value, each matrix comprises a minimum of few tens of different proteins that seem to be strictly associated to calcium carbonate biominerals. Among the proteins that are currently detected, one finds RLCDs-containing proteins (Repetitive-Low-Complexity Domains), enzymes, proteins with protease inhibitors domains and at last, proteins that contains typical ECM (ExtraCellular Matrix) domains. Today, we still do not understand how the skeletal matrix works, and unveiling its complex functioning is one of the challenges for the coming decade, both from fundamental and applied viewpoints. Is it realistic to attempt generating abiotically, in a test tube at room temperature, biomimetic composites that mimic natural biomineralizations in their properties If so, and by supposing that we know the individual functions of all the components of the matrix, is there a minimal number of proteins required for producing in vitro calcium carbonate biomaterials that approximate natural biominerals These issues are of importance for the future research directions in biomaterials science.


MRS Proceedings | 2009

Characterization of crustacyanin-A2 subunit as a component of the organic matrix of gastroliths from the crayfish Cherax quadricarinatus.

Gilles Luquet; Nathalie Le Roy; Isabelle Zanella-Cléon; Michel Becchi; Sergio Bucarey; María S. Fernández; José Luis Arias; Nathalie Guichard; Benjamin Marie; Frédéric Marin

Like the lobsters, some terrestrial crabs and other crayfishes, the Australian red claw crayfish, Cherax quadricarinatus , elaborates in its stomach wall calcium storage structures called gastroliths. For understanding the cyclic elaboration and stabilization of these amorphous calcified structures, we studied the organic matrix (OM) of these paired biomineralizations. After decalcification with acetic acid, we analysed the proteinaceous components of an acetic acid-insoluble fraction by two-dimensional electrophoresis. Nine spots were digested by trpsin and the tryptic peptides were sequenced by nanoLC-nanoESI-MS/MS mass spectrometry. About 100 peptidic sequences were compared to sequences previously registered in the databases. Seven of the partially sequenced organic matrix polypeptides are probably new proteins. Another one corresponds to the previously sequenced protein, GAP65, from Cherax quadricarinatus and the last one, which migrates in electrophoresis at around 25 kDa, presents strong homology with the crustacyanin-A2 subunit of Homarus gammarus .

Collaboration


Dive into the Nathalie Le Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Marie

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge