Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Naud is active.

Publication


Featured researches published by Nathalie Naud.


Cancer Research | 2015

A central role for heme iron in colon carcinogenesis associated with red meat intake

Nadia M. Bastide; Fatima Z. Chenni; Marc Audebert; Raphaëlle L. Santarelli; Sylviane Taché; Nathalie Naud; Maryse Baradat; Isabelle Jouanin; Reggie Surya; Ditte A. Hobbs; Gunter Georg Kuhnle; Isabelle Raymond-Letron; Françoise Guéraud; Denis E. Corpet; Fabrice Pierre

Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP + MeIQx, 50 + 25 μg/kg in diet), and NOC (induced by NaNO₂+ NaNO₂; 0.17 + 0.23 g/L of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc-deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions, but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67 ± 39 mm²; 2.5% hemoglobin diet: 114 ± 47 mm², P = 0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation. .


Cancer Prevention Research | 2010

Meat processing and colon carcinogenesis: cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats.

Raphaëlle L. Santarelli; Jean-Luc Vendeuvre; Nathalie Naud; Sylviane Taché; Françoise Guéraud; Michelle Viau; Claude Genot; Denis E. Corpet; Fabrice Pierre

Processed meat intake is associated with colorectal cancer risk, but no experimental study supports the epidemiologic evidence. To study the effect of meat processing on carcinogenesis promotion, we first did a 14-day study with 16 models of cured meat. Studied factors, in a 2 × 2 × 2 × 2 design, were muscle color (a proxy for heme level), processing temperature, added nitrite, and packaging. Fischer 344 rats were fed these 16 diets, and we evaluated fecal and urinary fat oxidation and cytotoxicity, three biomarkers of heme-induced carcinogenesis promotion. A principal component analysis allowed for selection of four cured meats for inclusion into a promotion study. These selected diets were given for 100 days to rats pretreated with 1,2-dimethylhydrazine. Colons were scored for preneoplastic lesions: aberrant crypt foci (ACF) and mucin-depleted foci (MDF). Cured meat diets significantly increased the number of ACF/colon compared with a no-meat control diet (P = 0.002). Only the cooked nitrite-treated and oxidized high-heme meat significantly increased the fecal level of apparent total N-nitroso compounds (ATNC) and the number of MDF per colon compared with the no-meat control diet (P < 0.05). This nitrite-treated and oxidized cured meat specifically increased the MDF number compared with similar nonnitrite-treated meat (P = 0.03) and with similar nonoxidized meat (P = 0.004). Thus, a model cured meat, similar to ham stored aerobically, increased the number of preneoplastic lesions, which suggests colon carcinogenesis promotion. Nitrite treatment and oxidation increased this promoting effect, which was linked with increased fecal ATNC level. This study could lead to process modifications to make nonpromoting processed meat. Cancer Prev Res; 3(7); 852–64. ©2010 AACR.


Scientific Reports | 2017

Food-grade TiO 2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon

Sarah Bettini; Elisa Boutet-Robinet; Christel Cartier; Christine Coméra; Eric Gaultier; Jacques Dupuy; Nathalie Naud; Sylviane Taché; Patrick Grysan; Solenn Reguer; Nathalie Thieriet; Matthieu Réfrégiers; Dominique Thiaudière; Jean-Pierre Cravedi; M. Carriere; Jean-Nicolas Audinot; Fabrice Pierre; Laurence Guzylack-Piriou; Eric Houdeau

Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer’s patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.


The American Journal of Clinical Nutrition | 2013

Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers

Fabrice Pierre; Océane Martin; Raphaëlle L. Santarelli; Sylviane Taché; Nathalie Naud; Françoise Guéraud; Marc Audebert; Jacques Dupuy; Nathalie Meunier; Didier Attaix; Jean-Luc Vendeuvre; Sidney S. Mirvish; Gunter C. G. Kuhnle; Noël Cano; Denis E. Corpet

BACKGROUND Processed meat intake has been associated with increased colorectal cancer risk. We have shown that cured meat promotes carcinogen-induced preneoplastic lesions and increases specific biomarkers in the colon of rats. OBJECTIVES We investigated whether cured meat modulates biomarkers of cancer risk in human volunteers and whether specific agents can suppress cured meat-induced preneoplastic lesions in rats and associated biomarkers in rats and humans. DESIGN Six additives (calcium carbonate, inulin, rutin, carnosol, α-tocopherol, and trisodium pyrophosphate) were added to cured meat given to groups of rats for 14 d, and fecal biomarkers were measured. On the basis of these results, calcium and tocopherol were kept for the following additional experiments: cured meat, with or without calcium or tocopherol, was given to dimethylhydrazine-initiated rats (47% meat diet for 100 d) and to human volunteers in a crossover study (180 g/d for 4 d). Rat colons were scored for mucin-depleted foci, putative precancer lesions. Biomarkers of nitrosation, lipoperoxidation, and cytotoxicity were measured in the urine and feces of rats and volunteers. RESULTS Cured meat increased nitroso compounds and lipoperoxidation in human stools (both P < 0.05). Calcium normalized both biomarkers in rats and human feces, whereas tocopherol only decreased nitro compounds in rats and lipoperoxidation in feces of volunteers (all P < 0.05). Last, calcium and tocopherol reduced the number of mucin-depleted foci per colon in rats compared with nonsupplemented cured meat (P = 0.01). CONCLUSION Data suggest that the addition of calcium carbonate to the diet or α-tocopherol to cured meat may reduce colorectal cancer risk associated with cured-meat intake. This trial was registered at clinicaltrials.gov as NCT00994526.


Nutrition and Cancer | 2010

Freeze-dried ham promotes azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colon.

Fabrice Pierre; Raphaëlle L. Santarelli; Ossama Allam; Sylviane Taché; Nathalie Naud; Françoise Guéraud; Denis E. Corpet

Processed and red meat consumption is associated with the risk of colorectal cancer. Meta-analyses have suggested that the risk associated with processed meat is higher. Most processed meats are cured and cooked, which leads to formation of free nitrosyl heme. We speculated that free nitrosyl heme is more toxic than native myoglobin. The promoting effect of a freeze-dried, cooked, cured ham diet was looked for in a 100-day study. Colon carcinogenesis endpoints were aberrant crypt foci and mucin depleted foci (MDF). A second study (14 days) was designed 1) to compare the effect of ham, hemoglobin, and hemin; and 2) to test the effect of sodium chloride, nitrite, and phosphate in diet on early biomarkers associated with heme-induced promotion. In the 100-day study, control and ham-fed rats had 3.5 and 8.5 MDF/colon, respectively (P < 0.0001). Promotion was associated with cytotoxicity and lipid peroxidation. In the short-term study, cytotoxicity and lipid peroxidation of fecal water, and the urinary marker of lipid peroxidation, increased dramatically in ham- and hemin-fed rat. In contrast, the hemoglobin diet, sodium chloride, nitrite, phosphate diet had no effect. Freeze-dried cooked ham can promote colon carcinogenesis in a rodent model. Hemin, but not hemoglobin, mimicked ham effect on early biochemical markers associated with carcinogenesis.


International Journal of Cancer | 2013

Calcium inhibits promotion by hot dog of 1,2‐dimethylhydrazine‐induced mucin‐depleted foci in rat colon

Raphaëlle L. Santarelli; Nathalie Naud; Sylviane Taché; Françoise Guéraud; Jean-Luc Vendeuvre; Lin Zhou; Muhammad M. Anwar; Sidney S. Mirvish; Denis E. Corpet; Fabrice Pierre

Epidemiology suggests that processed meat is associated with colorectal cancer risk, but few experimental studies support this association. We have shown that a model of cured meat made in a pilot workshop promotes preneoplastic lesions, mucin‐depleted foci (MDF) in the colon of rats. This study had two aims: to check if real store‐bought processed meats also promote MDF, and to test if calcium carbonate, which suppresses heme‐induced promotion, can suppress promotion by processed meat. A 14‐day study was done to test the effect of nine purchased cured meats on fecal and urinary biomarkers associated with heme‐induced carcinogenesis promotion. Fecal water from rats given hot dog or fermented raw dry sausage was particularly cytotoxic. These two cured meats were thus given to rats pretreated with 1,2‐dimethylhydrazine, to evaluate their effect on colorectal carcinogenesis. After a 100‐days feeding period, fecal apparent total N‐nitroso compounds (ATNC) were assayed and colons were scored for MDF. Hot dog diet increased fecal ATNC and the number of MDF per colon compared with the no‐meat control diet (3.0 ± 1.7 vs. 1.2 ± 1.4, p < 0.05). In a third study, addition of calcium carbonate (150 µmol/g) to the hot dog diet decreased the number of MDF/colon and fecal ATNC compared with the hot dog diet without calcium carbonate (1.2 ± 1.1 vs. 2.3 ± 1.4, respectively, p < 0.05). This is the first experimental evidence that a widely consumed processed meat promotes colon carcinogenesis in rats. It also shows that dietary prevention of this detrimental effect is possible.


Nutrition and Cancer | 2015

Antibiotic Suppression of Intestinal Microbiota Reduces Heme-Induced Lipoperoxidation Associated with Colon Carcinogenesis in Rats

Océane Martin; C. Lin; Nathalie Naud; Sylviane Taché; I. Raymond-Letron; Denis E. Corpet; Fabrice Pierre

Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.


Nutrition and Cancer | 2013

Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite

Fatima Z. Chenni; Sylviane Taché; Nathalie Naud; Françoise Guéraud; Ditte A. Hobbs; Gunter G. C. Kunhle; Fabrice Pierre; Denis E. Corpet

Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme-induced oxidation of fat, heterocyclic amines, or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate heme-induced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, drinking water added with nitrite to mimic the salivary nitrite content did not change the effect of hemoglobin on biochemical markers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitroso-compounds level, but their fecal concentration and their nature (iron-nitrosyl) would probably not be associated with an increased risk of cancer. We thus suggest that the rat model could be relevant for study the effect of red meat on colon carcinogenesis, in spite of the lack of nitrite in the saliva of rats.


British Journal of Nutrition | 2011

Calcium carbonate suppresses haem toxicity markers without calcium phosphate side effects on colon carcinogenesis

Ossama Allam; Diane Bahuaud; Sylviane Taché; Nathalie Naud; Denis E. Corpet; Fabrice Pierre

Red meat intake is associated with an increased risk of colorectal cancer. We have previously shown that haemin, Hb and red meat promote carcinogen-induced preneoplastic lesions, aberrant crypt foci (ACF), in the colon of rats. We have also shown that dietary calcium phosphate inhibits haemin-induced promotion and normalises faecal lipoperoxides and cytotoxicity. Unexpectedly, high-calcium phosphate control diet-fed rats had more preneoplastic lesions in the colon than low-Ca control diet-fed rats. The present study was designed to find a Ca supplementation with no adverse effect, by testing several doses and types of Ca salts. One in vitro study and two short-term studies in rats identified calcium carbonate as the most effective Ca salt to bind haem in vitro and to decrease faecal biomarkers previously associated with increased carcinogenesis: faecal water cytotoxicity and thiobarbituric acid-reactive substances. A long-term carcinogenesis study in dimethylhydrazine-injected rats demonstrated that a diet containing 100 μmol/g calcium carbonate did not promote ACF, in contrast with a previously tested calcium phosphate diet. The results suggest that calcium carbonate, and not calcium phosphate, should be used to reduce haem-associated colorectal cancer risk in meat eaters. They support the concept that the nature of the associated anion to a protective metal ion is important for chemoprevention.


Nutrition and Cancer | 2012

Induction of Colonic Aberrant Crypts in Mice by Feeding Apparent N-Nitroso Compounds Derived From Hot Dogs

Michael E. Davis; Michal P. Lisowyj; Lin Zhou; James L. Wisecarver; James M. Gulizia; Valerie Shostrom; Nathalie Naud; Denis E. Corpet; Sidney S. Mirvish

Nitrite-preserved meats (e.g., hot dogs) may help cause colon cancer because they contain N-nitroso compounds. We tested whether purified hot-dog-derived total apparent N-nitroso compounds (ANC) could induce colonic aberrant crypts, which are putative precursors of colon cancer. We purified ANC precursors in hot dogs and nitrosated them to produce ANC. In preliminary tests, CF1 mice received 1 or 3 i.p. injections of 5 mg azoxymethane (AOM)/kg. In Experiments 1 and 2, female A/J mice received ANC in diet. In Experiment 1, ANC dose initially dropped sharply because the ANC precursors had mostly decomposed but, later in Experiment 1 and throughout Experiment 2, ANC remained at 85 nmol/g diet. Mice were killed after 8 (AOM tests) or 17–34 (ANC tests) wk. Median numbers of aberrant crypts in the distal 2 cm of the colon for 1 and 3 AOM injections, CF1 controls, ANC (Experiment 1), ANC (Experiment 2),and untreated A/J mice were 31, 74, 12, 20, 12, and 5–6, with P < 0.01 for both ANC tests. Experiment 2 showed somewhat increased numbers of colonic mucin-depleted foci in the ANC-treated group. We conclude that hot-dog-derived ANC induced significant numbers of aberrant crypts in the mouse colon.

Collaboration


Dive into the Nathalie Naud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Dupuy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Estelle Pujos-Guillot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge