Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Scheers is active.

Publication


Featured researches published by Nathalie Scheers.


Nutrients | 2013

Regulatory Effects of Cu, Zn, and Ca on Fe Absorption: The Intricate Play between Nutrient Transporters

Nathalie Scheers

Iron is an essential nutrient for almost every living organism because it is required in a number of biological processes that serve to maintain life. In humans, recycling of senescent erythrocytes provides most of the daily requirement of iron. In addition, we need to absorb another 1–2 mg Fe from the diet each day to compensate for losses due to epithelial sloughing, perspiration, and bleeding. Iron absorption in the intestine is mainly regulated on the enterocyte level by effectors in the diet and systemic regulators accessing the enterocyte through the basal lamina. Recently, a complex meshwork of interactions between several trace metals and regulatory proteins was revealed. This review focuses on advances in our understanding of Cu, Zn, and Ca in the regulation of iron absorption. Ascorbate as an important player is also considered.


European Journal of Nutrition | 2008

Ascorbic acid uptake affects ferritin, Dcytb and Nramp2 expression in Caco-2 cells

Nathalie Scheers; Ann-Sofie Sandberg

BackgroundAscorbic acid (vitamin C) enhances iron uptake in human intestinal cells. It is commonly believed that the enhancement is due to the capacity of ascorbic acid to reduce ferric iron to ferrous iron. Other suggestions have recently been made about the effects of ascorbic acid on the cellular metabolism of iron. These effects must be investigated for several reasons. One important issue is to study whether ascorbic acid has effects on iron metabolism in the absence of extracellular iron in the intestinal lumen.Aim of the studyThe aim of this investigation was to determine whether cellular uptake of ascorbic acid affects iron acquisition in the Caco-2 cell line. The possible event was investigated by studying the expression of the iron storage protein ferritin, the iron uptake protein Nramp2 and a duodenal ferric reductase Dcytb after incubating ascorbic acid deficient or ascorbic acid fed cells with iron and/or ascorbic acid.MethodsThe above stated interactions were studied in the human Caco-2 cell model. Cell lysates were collected and subjected to SDS-PAGE and Western blotting. The blotted samples were stained with specific antibodies (Rabbit α-human-Nramp2 and Goat α-human Dcytb) against the respective proteins and the bands achieved were analysed by reflective density measurements. The cellular ferritin content was analysed with a commercial kit and the intracellular ascorbic acid concentration was measured by HPLC.ResultsThe results indicate that ascorbic acid uptake induces both iron independent and iron dependent ferritin formation, but the effect on iron dependent ferritin expression was significantly greater (470% compared to 19%). Western Blot analyses revealed a long term down-regulating effect of ascorbic acid on iron independent and iron dependent Nramp2 and Dcytb expression. However, the down-regulation of Dcytb was in general more extensive than that of Nramp2 (31–50% compared to 8–29%). In a second study of short term Nramp2 and Dcytb expression, the results suggested that both proteins were significantly up-regulated by ascorbic acid, regardless of intracellular ascorbic acid status. However, the impact of iron alone on Nramp2 up-regulation seems to be greater in the absence of ascorbic acid.ConclusionsThe influence of intracellular ascorbic acid status on ferritin formation must be considered in iron uptake studies in Caco-2 cells. This could be a cause of diverging inter-laboratory results. The long term down-regulation of Nramp2 and Dcytb seems to correlate with results of human studies, where long term ascorbic acid supplementation does not affect iron status. Similarly, the short term up-regulation of Nramp2 and Dcytb seems to agree with the improvement in iron uptake shown in humans when single doses of ascorbic acid were administrated. These results are important for the understanding of the impact of ascorbic acid on iron status and will hopefully lead to further investigations on the matter.


Journal of Nutritional Biochemistry | 2014

Proposing a Caco-2/HepG2 cell model for in vitro iron absorption studies☆

Nathalie Scheers; Annette Almgren; Ann-Sofie Sandberg

The Caco-2 cell line is well established as an in vitro model for iron absorption. However, the model does not reflect the regulation of iron absorption by hepcidin produced in the liver. We aimed to develop the Caco-2 model by introducing human liver cells (HepG2) to Caco-2 cells. The Caco-2 and HepG2 epithelia were separated by a liquid compartment, which allowed for epithelial interaction. Ferritin levels in cocultured Caco-2 controls were 21.7±10.3 ng/mg protein compared to 7.7±5.8 ng/mg protein in monocultured Caco-2 cells. The iron transport across Caco-2 layers was increased when liver cells were present (8.1%±1.5% compared to 3.5%±2.5% at 120 μM Fe). Caco-2 cells were exposed to 0, 80 and 120 μM Fe and responded with increased hepcidin production at 120 μM Fe (3.6±0.3 ng/ml compared to 2.7±0.3 ng/ml). The expression of iron exporter ferroportin in Caco-2 cells was decreased at the hepcidin concentration of 3.6 ng/ml and undetectable at external addition of hepcidin (10 ng/ml). The apical transporter DMT1 was also undetectable at 10 ng/ml but was unchanged at the lower concentrations. In addition, we observed that sourdough bread, in comparison to heat-treated bread, increased the bioavailability of iron despite similar iron content (53% increase in ferritin formation, 97% increase in hepcidin release). This effect was not observed in monocultured Caco-2 cells. The Caco-2/HepG2 model provides an alternative approach to in vitro iron absorption studies in which the hepatic regulation of iron transport must be considered.


Food & Function | 2016

Formation of reactive aldehydes (MDA, HHE, HNE) during the digestion of cod liver oil: comparison of human and porcine in vitro digestion models

Cecilia Tullberg; Karin Larsson; Nils-Gunnar Carlsson; Irene Comi; Nathalie Scheers; Gerd E. Vegarud; Ingrid Undeland

In this work, we investigated lipid oxidation of cod liver oil during gastrointestinal (GI) digestion using two types of in vitro digestion models. In the first type of model, we used human GI juices, while we used digestive enzymes and bile from porcine origin in the second type of model. Human and porcine models were matched with respect to factors important for lipolysis, using a standardized digestion protocol. The digests were analysed for reactive oxidation products: malondialdehyde (MDA), 4-hydroxy-trans-2-nonenal (HNE), and 4-hydroxy-trans-2-hexenal (HHE) by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS), and for free fatty acids (FFA) obtained during the digestion by gas chromatography-mass spectrometry (GC-MS). The formation of the oxidation products MDA, HHE, and HNE was low during the gastric digestion, however, it increased during the duodenal digestion. The formation of the oxidation products reached higher levels when digestive juices of human origin were used (60 μM of MDA, 9.8 μM of HHE, and 0.36 μM of HNE) [corrected] compared to when using enzymes and bile of porcine origin (0.96, and 1.6 μM of MDA; 0.16, and 0.23 μM of HHE; 0.026, [corrected] and 0.005 μM of HNE, respectively, in porcine models I and II). In all models, FFA release was only detected during the intestinal step, and reached up to 31% of total fatty acids (FA). The findings in this work may be of importance when designing oxidation oriented lipid digestion studies.


European Journal of Nutrition | 2016

Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

Nathalie Scheers; Lena Rossander-Hulthén; Inga Torsdottir; Ann-Sofie Sandberg

AbstractBackground Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. ObjectivesThe objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation.ResultsIn human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe3+ species were increased after the lactic fermentation, while there was no significant change in hydrated Fe2+. Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system.ConclusionsThe mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe3+) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.


International Journal of Food Sciences and Nutrition | 2009

Impaired uptake of beta-carotene by Caco-2 human intestinal cells in the presence of iron.

Anton Bengtsson; Nathalie Scheers; Thomas Andlid; Marie Alminger; Ann-Sofie Sandberg; Ulf Svanberg

At present, there are conflicting data regarding whether or not β-carotene has a positive effect on iron absorption. This study was undertaken to evaluate possible interactions involved in the uptake of β-carotene and iron in a human intestinal cell model (Caco-2). The Caco-2 cells were incubated with test solutions containing different amounts of ferrous chloride (10–50 µM) and β-carotene (0.3–2.5 µM) incorporated in synthetic micelles. In the absence of iron, cellular accumulation of β-carotene from synthetic micelles was proportional (r2=0.97, P <0.001) to the β-carotene concentration in the test solution. However, with addition of ferrous chloride (30 µM), the β-carotene uptake was significantly reduced (P <0.05), on average by 22%. There was also an inverse relationship between the β-carotene uptake and iron concentration in the test solution (r2=0.93, P <0.05). Iron provided in physiological amounts inhibited the uptake of β-carotene in the in vitro Caco-2 cell system.


Nutrients | 2016

Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice

Nikul K. Soni; Alastair B. Ross; Nathalie Scheers; Otto Savolainen; Intawat Nookaew; Britt G. Gabrielsson; Ann-Sofie Sandberg

Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.


Nutrients | 2015

Sourdough Fermentation of Wheat Flour does not Prevent the Interaction of Transglutaminase 2 with α2-Gliadin or Gluten

Niklas Engström; Ann-Sofie Sandberg; Nathalie Scheers

The enzyme transglutaminase 2 (TG2) plays a crucial role in the initiation of celiac disease by catalyzing the deamidation of gluten peptides. In susceptible individuals, the deamidated peptides initiate an immune response leading to celiac disease. Several studies have addressed lactic fermentation plus addition of enzymes as a means to degrade gluten in order to prevent adverse response in celiacs. Processing for complete gluten degradation is often harsh and is not likely to yield products that are of comparable characteristics as their gluten-containing counterparts. We are concerned that incomplete degradation of gluten may have adverse effects because it leads to more available TG2-binding sites on gluten peptides. Therefore, we have investigated how lactic acid fermentation affects the potential binding of TG2 to gluten protein in wheat flour by means of estimating TG2-mediated transamidation in addition to measuring the available TG2-binding motif QLP, in α2-gliadin. We show that lactic fermentation of wheat flour, as slurry or as part of sourdough bread, did not decrease the TG2-mediated transamidation, in the presence of a primary amine, to an efficient level (73%–102% of unfermented flour). Nor did the lactic fermentation decrease the available TG2 binding motif QLP in α2-gliadin to a sufficient extent in sourdough bread (73%–122% of unfermented control) to be useful for celiac safe food.


Nutrients | 2017

Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet

Nikulkumar Soni; Alastair B. Ross; Nathalie Scheers; Otto Savolainen; Intawat Nookaew; Britt G. Gabrielsson; Ann-Sofie Sandberg

Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids.


Food Chemistry | 2016

The effects of hydrothermal processing and germination on Fe speciation and Fe bioaccessibility to human intestinal Caco-2 cells in Tartary buckwheat

Paula Pongrac; Nathalie Scheers; Ann-Sofie Sandberg; Mateja Potisek; Iztok Arčon; Ivan Kreft; Peter Kump; Katarina Vogel-Mikuš

Tartary buckwheat is a gluten-free crop with great potential as a wheat substitute. Iron (Fe) is an important mineral element in staple foods which is required in sufficient bioaccessible quantities. The aim of the study was to investigate how processing of grains into groats (hydrothermal processing to remove the husk) and sprouts (7-day-old seedlings) affected Fe speciation (Fe(2+) or Fe(3+)), Fe ligand composition and Fe bioaccessibility to human Caco-2 cells. Groats contained the least Fe (23.8 ± 1.65 mg kg(-1)) and the lowest amounts of Fe(2+) (8%). Grains and sprouts had comparable Fe concentrations (78.2 ± 2.65 and 68.9 ± 2.73 mg kg(-1)) and similar proportions of Fe(2+) (15% and 18%). The main ligands for Fe in Tartary buckwheat material were phytate and citrate. Phytate was less abundant in sprouts, which did not correlate with greater Fe bioaccessibility. Iron bioaccessibility was 4.5-fold greater for grains than groats, suggesting that Fe is more bioaccessible in the husk than in the rest of the grain.

Collaboration


Dive into the Nathalie Scheers's collaboration.

Top Co-Authors

Avatar

Ann-Sofie Sandberg

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Britt G. Gabrielsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ingrid Undeland

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marie Alminger

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Andlid

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alastair B. Ross

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Vincent

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Annette Almgren

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cecilia Tullberg

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge