Nathalie Tarrat
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathalie Tarrat.
New Journal of Chemistry | 2011
Arnaud Boissonnet; Christelle Dupouy; Pierre Millard; Marie-Pierre Durrieu; Nathalie Tarrat; Jean-Marc Escudier
α,β-D-CNA building blocks featuring either canonical gauche(−) or noncanonical gauche(+) values of the nucleic acids sugar phosphate backbone torsional angle α have been introduced into oligonucleotides, and provide new insight on conformational restriction impact on duplex formation ability by means of UV experiments and molecular dynamics simulations.
Nature Communications | 2017
Thomas Walther; Christopher M. Topham; Romain Irague; Clément Auriol; Audrey Baylac; Hélène Cordier; Clémentine Dressaire; Luce Lozano-Huguet; Nathalie Tarrat; Nelly Martineau; Marion Stodel; Yannick Malbert; Marc Maestracci; Robert Huet; Isabelle André; Magali Remaud-Siméon; Jean François
2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l−1 DHB with a molar yield of 0.15.
Proteins | 2013
Christopher M. Topham; Mickaël Rouquier; Nathalie Tarrat; Isabelle André
The POLYFIT rigid‐body algorithm for automated global pairwise and multiple protein structural alignment is presented. Smith–Waterman local alignment is used to establish a set of seed equivalences that are extended using Needleman–Wunsch dynamic programming techniques. Structural and functional interaction constraints provided by evolution are encoded as one‐dimensional residue physical environment strings for alignment of highly structurally overlapped protein pairs. Local structure alignment of more distantly related pairs is carried out using rigid‐body conformational matching of 15‐residue fragments, with allowance made for less stringent conformational matching of metal‐ion and small molecule ligand‐contact, disulphide bridge, and cis‐peptide correspondences. Protein structural plasticity is accommodated through the stepped adjustment of a single empirical distance parameter value in the calculation of the Smith–Waterman dynamic programming matrix. Structural overlap is used both as a measure of similarity and to assess alignment quality. Pairwise alignment accuracy has been benchmarked against that of 10 widely used aligners on the Sippl and Wiederstein set of difficult pairwise structure alignment problems, and more extensively against that of Matt, SALIGN, and MUSTANG in pairwise and multiple structural alignments of protein domains with low shared sequence identity in the SCOP‐ASTRAL 40% compendium. The results demonstrate the advantages of POLYFIT over other aligners in the efficient and robust identification of matching seed residue positions in distantly related protein targets and in the generation of longer structurally overlapped alignment lengths. Superposition‐based application areas include comparative modeling and protein and ligand design. POLYFIT is available on the Web server at http://polyfit.insa‐toulouse.fr. Proteins 2013; 81:1823–1839.
Journal of Nucleic Acids | 2012
Dan-Andrei Catana; Brice-Loı̈c Renard; Marie Maturano; Corinne Payrastre; Nathalie Tarrat; Jean-Marc Escudier
We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not.
Journal of Physics: Condensed Matter | 2018
Jérôme Cuny; Nathalie Tarrat; Fernand Spiegelman; Arthur Huguenot; Mathias Rapacioli
Density-functional based tight-binding (DFTB) is an efficient quantum mechanical method that can describe a variety of systems, going from organic and inorganic compounds to metallic and hybrid materials. The present topical review addresses the ability and performance of DFTB to investigate energetic, structural, spectroscopic and dynamical properties of gold and silver materials. After a brief overview of the theoretical basis of DFTB, its parametrization and its transferability, we report its past and recent applications to gold and silver systems, including small clusters, nanoparticles, bulk and surfaces, bare and interacting with various organic and inorganic compounds. The range of applications covered by those studies goes from plasmonics and molecular electronics, to energy conversion and surface chemistry. Finally, perspectives of DFTB in the field of gold and silver surfaces and NPs are outlined.
EPL | 2016
Miao Liu; Patrizio Benzo; Hao Tang; Marion Castiella; Bénédicte Warot-Fonrose; Nathalie Tarrat; Christophe Gatel; M. Respaud; Joseph Morillo; Marie-José Casanove
– Whereas bulk equiatomic FeRh alloy with B2 structure is antiferromagnetic (AFM) below 370K, we demonstrate that surface configuration can stabilize the low-temperature ferro-magnetic (FM) state in FeRh nanoparticles in the 6-10 nm range. The most stable configuration for FM nanoparticles, predicted through first principles calculations, is obtained in magnetron sputtering synthesized nanoparticles. The structure, morphology and Rh-(100) surface termination are confirmed by aberration-corrected (scanning) transmission electron microscopy. The FM magnetic state is verified by vibrating sample magnetometry experiments. This combined theoretical and experimental study emphasizes the strong interplay between surface configuration, morphology and magnetic state in magnetic nanoparticles.
Journal of Physical Chemistry A | 2018
Mathias Rapacioli; Nathalie Tarrat; Fernand Spiegelman
We investigate the dependence upon the charge of the heat capacities of magic gold cluster Au20 obtained from density functional-based tight binding theory within parallel tempering molecular dynamics and the multiple histogram method. The melting temperatures, determined from the heat capacity curves, are found to be 1102 K for neutral Au20 and only 866 and 826 K for Au20+ and Au20-. Both the canonical and the microcanonical aspects of the transition are discussed. A convex intruder, associated with a negative heat capacity, is evidenced in the microcanonical entropy in the case of the neutral cluster but is absent in the melting processes of the ions. The present work shows that a single charge quantitatively affects the thermal properties of the gold 20mer.
Journal of Chemical Physics | 2018
Nathalie Tarrat; Mathias Rapacioli; Fernand Spiegelman
Structural aspects of the Au147 cluster have been investigated through a density functional based tight binding global optimization involving a parallel tempering molecular dynamics scheme with quenching followed by geometries relaxation at the Density Functional Theory (DFT) level. The focus is put on the competition between relaxed ordered regular geometries and disordered (or amorphous) structures. The present work shows that Au147 amorphous geometries are relevant low energy candidates and are likely to contribute in finite temperature dynamics and thermodynamics. The structure of the amorphous-like isomers is discussed from the anisotropy parameters, the atomic coordinations, the radial and pair distribution functions, the IR spectra, and the vibrational DOS. With respect to the regular structures, the amorphous geometries are shown to be characterized by a larger number of surface atoms, a less dense volume with reduced coordination number per atom, a propensity to increase the dimension of flat facets at the surface, and a stronger anisotropy. Moreover, all amorphous clusters have similar IR spectra, almost continuous with active frequencies over the whole spectral range, while symmetric clusters are characterized by a few lines with large intensities.
Materials Research Express | 2016
Fatah Chiter; Van Bac Nguyen; Nathalie Tarrat; Magali Benoit; Hao Tang; Corinne Lacaze-Dufaure
State-of-the-art van der Waals (vdW) corrected density functional theory (DFT) is routinely used to overcome the failure of standard DFT in the description of molecule/surface long range interactions. However, the systematic use of dispersion forces to model metallic surfaces could lead to less accurate results than the standard DFT and the effect of these corrections on the metal properties should be properly evaluated. In this framework, the behavior of two widely used vdW corrected DFT methods (DFT-D2 and vdW–DF/optB86b) has been evaluated on six metals, i.e. Al, Cu, Au, Ni, Co and Fe, with respect to standard GGA–DFT and experiments. Regarding bulk properties, general trends are found for the lattice parameter, cohesive energy and magnetic moment variations when the vdW correction is introduced. Surface energies, work functions and interlayer distances of closed packed surfaces, Al(111), Cu(111), Au(111) and magnetic Ni(111), Co(0001) and Fe(110), are also strongly affected by the dispersion forces. These modifications suggest a systematic verification of the surface properties when a dispersion correction is included.
Journal of Organic Chemistry | 2015
Stéphane Salamone; Catherine Guerreiro; Emmanuelle Cambon; Jason M. Hargreaves; Nathalie Tarrat; Magali Remaud-Siméon; Isabelle André; Laurence A. Mulard
Chemo-enzymatic strategies hold great potential for the development of stereo- and regioselective syntheses of structurally defined bioactive oligosaccharides. Herein, we illustrate the potential of the appropriate combination of a planned chemo-enzymatic pathway and an engineered biocatalyst for the multistep synthesis of an important decasaccharide for vaccine development. We report the stepwise investigation, which led to an efficient chemical conversion of allyl α-d-glucopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→3)-2-deoxy-2-trichloroacetamido-β-d-glucopyranoside, the product of site-specific enzymatic α-d-glucosylation of a lightly protected non-natural disaccharide acceptor, into a pentasaccharide building block suitable for chain elongation at both ends. Successful differentiation between hydroxyl groups features the selective acylation of primary alcohols and acetalation of a cis-vicinal diol, followed by a controlled per-O-benzylation step. Moreover, we describe the successful use of the pentasaccharide intermediate in the [5 + 5] synthesis of an aminoethyl aglycon-equipped decasaccharide, corresponding to a dimer of the basic repeating unit from the O-specific polysaccharide of Shigella flexneri 2a, a major cause of bacillary dysentery. Four analogues of the disaccharide acceptor were synthesized and evaluated to reach a larger repertoire of O-glucosylation patterns encountered among S. flexneri type-specific polysaccharides. New insights on the potential and limitations of planned chemo-enzymatic pathways in oligosaccharide synthesis are provided.