Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathalie Vionnet is active.

Publication


Featured researches published by Nathalie Vionnet.


American Journal of Human Genetics | 2000

Genomewide Search for Type 2 Diabetes–Susceptibility Genes in French Whites: Evidence for a Novel Susceptibility Locus for Early-Onset Diabetes on Chromosome 3q27-qter and Independent Replication of a Type 2–Diabetes Locus on Chromosome 1q21–q24

Nathalie Vionnet; El Habib Hani; Sophie Dupont; Sophie Gallina; Stephan Francke; Sébastien Dotte; Frédérique De Matos; Emmanuelle Durand; Frédéric Leprêtre; Cécile Lecoeur; Philippe Gallina; Lirije Zekiri; Christian Dina; Philippe Froguel

Despite recent advances in the molecular genetics of type 2 diabetes, the majority of susceptibility genes in humans remain to be identified. We therefore conducted a 10-cM genomewide search (401 microsatellite markers) for type 2 diabetes-related traits in 637 members of 143 French pedigrees ascertained through multiple diabetic siblings, to map such genes in the white population. Nonparametric two-point and multipoint linkage analyzes-using the MAPMAKER-SIBS (MLS) and MAXIMUM-BINOMIAL-LIKELIHOOD (MLB) programs for autosomal markers and the ASPEX program for chromosome X markers-were performed with six diabetic phenotypes: diabetes and diabetes or glucose intolerance (GI), as well as with each of the two phenotypes associated with normal body weight (body-mass index<27 kg/m(2)) or early age at diagnosis (<45 years). In a second step, high-resolution genetic mapping ( approximately 2 cM) was performed in regions on chromosomes 1 and 3 loci showing the strongest linkage to diabetic traits. We found evidence for linkage with diabetes or GI diagnosed at age <45 years in 92 affected sib pairs from 55 families at the D3S1580 locus on chromosome 3q27-qter using MAPMAKER-SIBS (MLS = 4.67, P=.000004), supported by the MLB statistic (MLB-LOD=3.43, P=.00003). We also found suggestive linkage between the lean diabetic status and markers APOA2-D1S484 (MLS = 3. 04, P=.00018; MLB-LOD=2.99, P=.00010) on chromosome 1q21-q24. Several other chromosomal regions showed indication of linkage with diabetic traits, including markers on chromosome 2p21-p16, 10q26, 20p, and 20q. These results (a) showed evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter and (b) confirmed the previously reported diabetes-susceptibility locus on chromosome 1q21-q24. Saturation on both chromosomes narrowed the regions of interest down to an interval of <7 cM.


Journal of Clinical Investigation | 1994

Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations.

Maria Byrne; Jeppe Sturis; Karine Clément; Nathalie Vionnet; Maria E. Pueyo; Markus Stoffel; Jun Takeda; Philippe Passa; Daniel Cohen; Graeme I. Bell

Pancreatic beta-cell function was studied in six subjects with mutations in the enzyme glucokinase (GCK) who were found to have elevated fasting and postprandial glucose levels in comparison to six normoglycemic controls. Insulin secretion rates (ISRs) were estimated by deconvolution of peripheral C-peptide values using a two-compartment model and individual C-peptide kinetics obtained after bolus intravenous injections of biosynthetic human C-peptide. First-phase insulin secretory responses to intravenous glucose and insulin secretion rates over a 24-h period on a weight maintenance diet were not different in subjects with GCK mutations and controls. However, the dose-response curve relating glucose and ISR obtained during graded intravenous glucose infusions was shifted to the right in the subjects with GCK mutations and average ISRs over a glucose range between 5 and 9 mM were 61% lower than those in controls. In the controls, the beta cell was most sensitive to an increase in glucose at concentrations between 5.5 and 6.0 mM, whereas in the patients with GCK mutations the point of maximal responsiveness was increased to between 6.5 and 7.5 mM. Even mutations that resulted in mild impairment of in vitro enzyme activity were associated with a > 50% reduction in ISR. The responsiveness of the beta cell to glucose was increased by 45% in the subjects with mutations after a 42-h intravenous glucose infusion at a rate of 4-6 mg/kg per min. During oscillatory glucose infusion with a period of 144 min, profiles from the subjects with mutations revealed reduced spectral power at 144 min for glucose and ISR compared with controls, indicating decreased ability to entrain the beta cell with exogenous glucose. In conclusion, subjects with mutations in GCK demonstrate decreased responsiveness of the beta cell to glucose manifest by a shift in the glucose ISR dose-response curve to the right and reduced ability to entrain the ultradian oscillations of insulin secretion with exogenous glucose. These results support a key role for the enzyme GCK in determining the in vivo glucose/ISR dose-response relationships and define the alterations in beta-cell responsiveness that occur in subjects with GCK mutations.


Nature Genetics | 2000

The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes.

Gérard Waeber; Jérôme Delplanque; Christophe Bonny; Vincent Mooser; Myriam Steinmann; Christian Widmann; Anne Maillard; Judith Miklossy; Christian Dina; El Habib Hani; Nathalie Vionnet; Pascal Nicod; Philippe Boutin; Philippe Froguel

Type 2 diabetes is a polygenic and genetically heterogenous disease. The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs ). We evaluated the role of IB1 in β-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma β-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IB1 protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on 149 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (S59N) that segregated with diabetes. In vitro , this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of β-cell function.


Diabetes | 1995

Cloning, Functional Expression, and Chromosomal Localization of the Human Pancreatic Islet Glucose-Dependent Insulinotropic Polypeptide Receptor

Sandrine Gremlich; Andrée Porret; El Habib Hani; Dorra Cherif; Nathalie Vionnet; Philippe Froguel; Bernard Thorens

Glucose-dependent insulinotropic polypeptide (GIP) is a hormone secreted by the endocrine K-cells from the duodenum that stimulates glucose-induced insulin secretion. Here, we present the molecular characterization of the human pancreatic islet GIP receptor. cDNA clones for the GIP receptor were isolated from a human pancreatic islet cDNA library. They encoded two different forms of the receptor, which differed by a 27–amino acid insertion in the COOH-terminal cytoplasmic tail. The receptor protein sequence was 81% identical to that of the rat GIP receptor. When expressed in Chinese hamster lung fibroblasts, both forms of the receptor displayed high-affinity binding for GIP (180 and 600 µmol/l). GIP binding was displaced by <20% by 1 µmol/l glucagon, glucagon-like peptide (GLP-I)(7–36) amide, vasoactive intestinal peptide, and secretin. However exendin-4 and exendin-(9–39) at 1 μumol/l displaced binding by ∼70 and ∼100% at 10 µmol/l. GIP binding to both forms of the receptor induced a dose-dependent increase in intracellular cAMP levels (EC50 values of 0.6–0.8 µmol/l) but no elevation of cytoplasmic calcium concentrations. Interestingly, both exendin-4 and exendin-(9–39) were antagonists of the receptor, inhibiting GIP-induced cAMP formation by up to 60% when present at a concentration of 10 μmol/l. Finally, the physical and genetic chromosomal localization of the receptor gene was determined to be on 19q13.3, close to the ApoC2 gene. These data will help study the physiology and pathophysiology of the human GIP receptor.


Journal of Clinical Investigation | 1998

A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulin-dependent diabetes mellitus.

El Habib Hani; L Suaud; P Boutin; Jean-Claude Chèvre; Emmanuelle Durand; A Philippi; F Demenais; Nathalie Vionnet; Hiroto Furuta; Gilberto Velho; Graeme I. Bell; B Laine; Phillipe Froguel

Non-insulin-dependent diabetes mellitus (NIDDM) is a heterogeneous disorder characterized by hyperglycemia resulting from defects in insulin secretion and action. Recent studies have found mutations in the hepatocyte nuclear factor-4 alpha gene (HNF-4alpha) in families with maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes characterized by early age at onset and a defect in glucose-stimulated insulin secretion. During the course of our search for susceptibility genes contributing to the more common late-onset NIDDM forms, we observed nominal evidence for linkage between NIDDM and markers in the region of the HNF-4alpha/MODY1 locus in a subset of French families with NIDDM diagnosed before 45 yr of age. Thus, we screened these families for mutations in the HNF-4alpha gene. We found a missense mutation, resulting in a valine-to-isoleucine substitution at codon 393 in a single family. This mutation cosegregated with diabetes and impaired insulin secretion, and was not present in 119 control subjects. Expression studies showed that this conservative substitution is associated with a marked reduction of transactivation activity, a result consistent with this mutation contributing to the insulin secretory defect observed in this family.


Diabetes | 1996

Clinical Phenotypes, Insulin Secretion, and Insulin Sensitivity in Kindreds With Maternally Inherited Diabetes and Deafness Due to Mitochondrial tRNALeu(UUR) Gene Mutation

Gilberto Velho; Maria Byrne; Karine Clément; Jeppe Sturis; Maria E. Pueyo; Hélène Blanché; Nathalie Vionnet; Jean Fiet; Philippe Passa; Jean-Jacques Robert; Kenneth S. Polonsky; Philippe Froguel

An A-to-G transition in the mitochondrial tRNALeu(UUR) gene at base pair 3243 has been shown to be associated with the maternally transmitted clinical phenotype of NIDDM and sensorineural hearing loss in white and Japanese pedigrees. We have detected this mutation in 25 of 50 tested members of five white French pedigrees. Affected (mutation-positive) family members presented variable clinical features, ranging from normal glucose tolerance (NGT) to insulin-requiring diabetes. The present report describes the clinical phenotypes of affected members and detailed evaluations of insulin secretion and insulin sensitivity in seven mutation-positive individuals who have a range of glucose tolerance from normal (n = 3) to impaired (n = 1) to NIDDM (n = 3). Insulin secretion was evaluated during two experimental protocols: the first involved the measurement of insulin secretory responses during intravenous glucose tolerance test, hyperglycemic clamp, and intravenous injection of arginine. The second consisted of the administration of graded and oscillatory infusions of glucose and studies to define C-peptide kinetics. This protocol was aimed at assessing two sensitive measures of β-cell dysfunction: the priming effect of glucose on the glucose-insulin secretion rate (ISR) dose-response curve and the ability of oscillatory glucose infusion to entrain insulin secretory oscillations. Insulin sensitivity was assessed by euglycemic-hyperinsulinemic clamp. Evaluation of insulin secretion demonstrated a large degree of between- and within-subject variability. However, all subjects, including those with NGT, demonstrated abnormal insulin secretion on at least one of the tests. In the four subjects with normal or impaired glucose tolerance, glucose failed to prime the ISR response, entrainment of ultradian insulin secretory oscillations was abnormal, or both defects were present. The response to arginine was always preserved, including in subjects with NIDDM. Insulin resistance was observed only in the subjects with overt diabetes. In conclusion, the pathophysiological mechanisms responsible for the development of NIDDM and insulin-requiring diabetes in this syndrome are complex and might include defects in insulin production, glucose toxicity, and insulin resistance. However, our data suggest that a defect of glucose-regulated insulin secretion is an early possible primary abnormality in carriers of the mutation. This defect might result from the progressive reduction of oxidative phosphorylation and implicate the glucose-sensing mechanism of β-cells.


Diabetologia | 1998

Mutation screening in 18 Caucasian families suggest the existence of other MODY genes

Jean-Claude Chèvre; El Habib Hani; Philippe Boutin; Martine Vaxillaire; H. Blanché; Nathalie Vionnet; V. C. Pardini; José Timsit; E. Larger; Guillaume Charpentier; D. Beckers; M. Maes; Christine Bellanné-Chantelot; Gilberto Velho; Philippe Froguel

Summary Maturity-onset diabetes of the young (MODY) is a heterogeneous subtype of non-insulin-dependent diabetes mellitus characterised by early onset, autosomal dominant inheritance and a primary defect in insulin secretion. To date five MODY genes have been identified: hepatocyte nuclear factor-4 alpha (HNF-4α/MODY1/TCF14) on chromosome 20 q, glucokinase (GCK/MODY2) on chromosome 7 p, hepatocyte nuclear factor-1 alpha (HNF-1α/MODY3/TCF1) on chromosome 12 q, insulin promoter factor-1 (IPF1/MODY4) on chromosome 13 q and hepatocyte nuclear factor-1 beta (HNF-1β/MODY5/TCF2) on chromosome 17cen-q. We have screened the HNF-4α, HNF-1α and HNF-1β genes in members of 18 MODY kindreds who tested negative for glucokinase mutations. Five missense (G31D, R159W, A161T, R200W, R271W), one substitution at the splice donor site of intron 5 (IVS5nt + 2T→A) and one deletion mutation (P379fsdelT) were found in the HNF-1α gene, but no MODY-associated mutations were found in the HNF-4α and HNF-1β genes. Of 67 French MODY families that we have now studied, 42 (63 %) have mutations in the glucokinase gene, 14 (21 %) have mutations in the HNF-1α gene, and 11 (16 %) have no mutations in the HNF-4α, IPF1 and HNF-1β genes. Eleven families do not have mutations in the five known MODY genes suggesting that there is at least one additionnal locus that can cause MODY. [Diabetologia (1998) 41: 1017–1023]


Diabetes | 1997

Genetic studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among French caucasians

El Habib Hani; K. Clement; Gilberto Velho; Nathalie Vionnet; Jörg Hager; Anne Philippi; Christian Dina; H. Inoue; M. A. Permutt; A. Basdevant; M. North; Florence Demenais; B. Guy-Grand; Philippe Froguel

The sulfonylurea receptor (SUR) is a key component in glucose-stimulated insulin secretion. Obesity and NIDDM are frequently associated and share some metabolic abnormalities, suggesting that they might also share some susceptibility genes. Thus, the SUR encoding gene is a plausible candidate for a primary pancreatic β-cell defect and thus for hyperglycemia and weight gain. Through association and linkage studies, we have investigated the potential role of the SUR gene in families with NIDDM and in two independent sets of morbidly obese families. The exon 22 T-allele at codon 761 was more common in patients with NIDDM (7.7%) and morbid obesity (7.8%) than in control subjects (1.8%, P = 0.030 and P = 0.023, respectively). This variant was associated with morbid obesity (odds ratio 3.71, P = 0.017) and NIDDM (odds ratio 2.20, P = 0.04; association dependent on BMI). Although the frequencies for intron 24 variant were similar in all groups, morbidly obese patients homozygous for the c-allele had a more deleterious form of obesity. Sib-pair linkage studies with NIDDM in French Caucasian families gave no evidence for linkage to the SUR locus. However, in one set of the obese families, we found an indication for linkage with a SUR-linked microsatellite marker (D11S419, P = 0.0032). We conclude that in Caucasians, the SUR locus may contribute to the genetic susceptibility to NIDDM and obesity.


Diabetes | 1993

Identification of Glucokinase Mutations in Subjects With Gestational Diabetes Mellitus

Markus Stoffel; Katherine L Bell; Christine L Blackburn; Keesha L. Powell; Tracy S. Seo; Jun Takeda; Nathalie Vionnet; Xiang Ks; Madhavi Gidh-Jain; Simon J. Pilkis; Carole Ober; Graeme I. Bell

Recent studies have shown that mutations in the glucokinase gene on chromosome 7 can cause an autosomal dominant form of NIDDM with a variable clinical phenotype and onset during childhood. The variable clinical phenotype includes mild fasting hyperglycemia (i.e., a plasma glucose value of > 110 mg/dl, a value that is at least 2–3 SDs above normal), impaired glucose tolerance, gestational diabetes mellitus, as well as overt NIDDM as defined using National Diabetes Data Group or World Health Organization criteria. Because gestational diabetes mellitus was a clinical feature associated with glucokinase mutations, we have screened a group of women with gestational diabetes who also had a first-degree relative with diabetes mellitus for the presence of mutations in this gene. Among 40 subjects, we identified two mutations, suggesting a prevalence of ∼5% in this group. Extrapolating from this result, the prevalence of glucokinase-deficient NIDDM among Americans may be ∼1 in 2500.


Diabetes | 2006

Analysis of 14 candidate genes for diabetic nephropathy on chromosome 3q in european populations : Strongest evidence for association with a variant in the promoter region of the adiponectin gene

Nathalie Vionnet; David Tregouet; Gbenga Kazeem; Ivo Gut; Per-Henrik Groop; Lise Tarnow; Hans Henrik Parving; Samy Hadjadj; Carol Forsblom; Martin Farrall; Dominique Gauguier; Roger D. Cox; Fumihiko Matsuda; Simon Heath; Alexandre Thévard; Rachel Rousseau; François Cambien; Michel Marre; Mark Lathrop

Linkage studies have mapped loci for diabetic nephropathy and associated phenotypes on chromosome 3q. We studied 14 plausible candidate genes in the linkage region because of their potential role in vascular complications. In a large-scale study of patients from Denmark, Finland, and France who have type 1 diabetes, 1,057 case and 1,127 control subjects, as well as 532 trios, were investigated for association with diabetic nephropathy. We analyzed 69 haplotype-tagging single nucleotide polymorphisms and nonsynonymous variants that were identified by sequencing. Polymorphisms in three genes, glucose transporter 2 (SLC2A2), kininogen (KNG1), and adiponectin (ADIPOQ), showed nominal association with diabetic nephropathy in single-point analysis. The T-allele of SLC2A2_16459CT was associated with a decreased risk of diabetic nephropathy (odds ratio 0.79 [95% CI 0.66–0.96], P = 0.016), whereas the T-allele of KNG_7965CT and the A-allele of ADIPOQ_prom2GA were associated with increased risk of nephropathy (1.17 [1.03–1.32], P = 0.016; 1.46 [1.11–1.93], P = 0.006, respectively). Analyses of the transmission disequilibrium test showed similar trends only for ADIPOQ_prom2GA with the overtransmission of the A-allele to patients with diabetic nephropathy (1.52 [0.86–2.66], P = NS) and of the G-allele to patients without diabetic nephropathy (0.50 [0.27–0.92], P = 0.026). The overall significance for this variant (nominal P = 0.011) suggests that ADIPOQ might be involved in the development of diabetic nephropathy.

Collaboration


Dive into the Nathalie Vionnet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lise Tarnow

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Passa

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge