Nathan A. Siegfried
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan A. Siegfried.
Nature Methods | 2014
Nathan A. Siegfried; Steven Busan; Greggory M. Rice; Julie A E Nelson; Kevin M. Weeks
Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2′-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP–guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.
Nature Protocols | 2015
Matthew J. Smola; Greggory M. Rice; Steven Busan; Nathan A. Siegfried; Kevin M. Weeks
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2′-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as can be done for simple model RNAs. This protocol describes the experimental steps, implemented over 3 d, that are required to perform SHAPE probing and to construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots and provides useful troubleshooting information. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures and visualize probable and alternative helices, often in under 1 d. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles and entire transcriptomes.
Journal of the American Chemical Society | 2008
Andrea L. Cerrone-Szakal; Nathan A. Siegfried; Philip C. Bevilacqua
The hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa. Inversion of the rate-pH profile was used as the crux of a mechanistic argument that C75 serves as general acid both in the presence and absence of Mg(2+). However, subsequent studies on a double mutant (DM) ribozyme suggested that the pKa observed for WT in the absence of Mg(2+) arises from ionization of C41, a structural nucleobase. To investigate this further, we acquired rate-pH/pD profiles and proton inventories for WT and DM in the absence of Mg(2+). Corrections were made for effects of ionic strength on hydrogen ion activity and pH meter readings. Results are accommodated by a model wherein the Mg(2+)-free pKa observed for WT arises from ionization of C75, and DM reactivity is compromised by protonation of C41. The Brønsted base appears to be water or hydroxide ion depending on pH. The observed pKas are related to salt-dependent pH titrations of a model oligonucleotide, as well as electrostatic calculations, which support the local environment for C75 in the absence of Mg(2+) being similar to that in the presence of Mg(2+) and impervious to bulk ions. Accordingly, the catalytic role of C75 as the general acid does not appear to depend on divalent ions or the identity of the Brønsted base.
FEBS Letters | 2013
David M. Mauger; Nathan A. Siegfried; Kevin M. Weeks
Structured RNA elements within messenger RNA often direct or modulate the cellular production of active proteins. As reviewed here, RNA structures have been discovered that govern nearly every step in protein production: mRNA production and stability; translation initiation, elongation, and termination; protein folding; and cellular localization. Regulatory RNA elements are common within RNAs from every domain of life. This growing body of RNA‐mediated mechanisms continues to reveal new ways in which mRNA structure regulates translation. We integrate examples from several different classes of RNA structure‐mediated regulation to present a global perspective that suggests that the secondary and tertiary structure of RNA ultimately constitutes an additional level of the genetic code that both guides and regulates protein biosynthesis.
Biochemistry | 2010
Nathan A. Siegfried; Bernie O'hare; Philip C. Bevilacqua
Secondary structure plays critical roles in nucleic acid function. Mismatches in DNA can lead to mutation and disease, and some mismatches involve a protonated base. Among protonated mismatches, A(+).C wobble pairs form near physiological pH and have relatively minor effects on helix geometry, making them especially important in biology. Herein, we investigate effects of helix position, temperature, and ionic strength on pK(a) shifting in A(+).C wobble pairs in DNA. We observe that pK(a) shifting is favored by internal A(+).C wobbles, which have low cooperativities of folding and make large contributions to stability, and disfavored by external A(+).C wobbles, which have high folding cooperativities but make small contributions to stability. An inverse relationship between pK(a) shifting and temperature is also found, which supports a model in which protonation is enthalpically favored overall and entropically correlated with cooperativity of folding. We also observe greater pK(a) shifts as the ionic strength decreases, consistent with anticooperativity between proton binding and counterion-condensed monovalent cation. Under the most favorable temperature and ionic strength conditions tested, a pK(a) of 8.0 is observed for the A(+).C wobble pair, which represents an especially large shift ( approximately 4.5 pK(a) units) from the unperturbed pK(a) value of adenosine. This study suggests that protonated A(+).C wobble pairs exist in DNA under biologically relevant conditions, where they can drive conformational changes and affect replication and transcription fidelity.
Nature Protocols | 2011
Kady Ann Steen; Nathan A. Siegfried; Kevin M. Weeks
RNA SHAPE chemistry yields quantitative, single-nucleotide resolution structural information based on the reaction of the 2′-hydroxyl group of conformationally flexible nucleotides with electrophilic SHAPE reagents. However, SHAPE technology has been limited by the requirement that sites of RNA modification be detected by primer extension. Primer extension results in loss of information at both the 5′ and 3′ ends of an RNA and requires multiple experimental steps. Here we describe RNase-detected SHAPE that uses a processive, 3′→5′ exoribonuclease, RNase R, to detect covalent adducts in 5′-end–labeled RNA in a one-tube experiment. RNase R degrades RNA but stops quantitatively three and four nucleotides 3′ of a nucleotide containing a covalent adduct at the ribose 2′-hydroxyl or the pairing face of a nucleobase, respectively. We illustrate this technology by characterizing ligand-induced folding for the aptamer domain of the Escherichia coli thiamine pyrophosphate riboswitch RNA. RNase-detected SHAPE is a facile, two-day approach that can be used to analyze diverse covalent adducts in any RNA molecule, including short RNAs not amenable to analysis by primer extension and RNAs with functionally important structures at their 5′ or 3′ ends.
Journal of the American Chemical Society | 2010
Nathan A. Siegfried; Ryszard Kierzek; Philip C. Bevilacqua
RNA plays essential roles in much of biology. These functions are dictated by structures mediated by hydrogen bonding, stacking, electrostatics, and steric interactions. Roles of unsatisfied hydrogen bond functionalities in these structures are less well understood. Herein, we evaluated the energetic contributions of unsatisfied hydrogen bonding groups by placing chemically modified substituents in select internal positions in RNA helices and conducting thermodynamic studies. We find that unsatisfied carbonyl groups make exceptional contributions to structure formation (approximately 3 kcal/mol in free energy), most likely due to a combination of strain and dehydration effects. Thus, unsatisfied hydrogen bonding groups are likely key determinants in the folding energetics and specificity of many RNA and DNA molecules and may be especially important in tertiary structure interactions.
Methods in Enzymology | 2009
Nathan A. Siegfried; Philip C. Bevilacqua
Double and triple mutant thermodynamic cycles provide a means to dissect the cooperativity of RNA and DNA folding at both the secondary and tertiary structural levels through use of the thermodynamic box or cube. In this article, we describe three steps for applying thermodynamic cycles to nucleic acid folding, with considerations of both conceptual and experimental features. The first step is design of an appropriate system and development of hypotheses regarding which residues might interact. Next is implementing this design in terms of a tractable experimental strategy, with an emphasis on UV melting. The final step, and the one we emphasize the most, is interpreting mutant cycles in terms of coupling between specific residues in the RNA or DNA. Coupling free energy in the absence and presence of changes elsewhere in the molecule is discussed in terms of specific folding models, including stepwise folding and concerted changes. Last, we provide a practical section on the use of commercially available software (KaleidaGraph) to fit melting data, along with a consideration of error propagation. Along the way, specific examples are chosen from the literature to illustrate the methods. This article is intended to be accessible to the biochemist or biologist without extensive thermodynamics background.
Methods of Molecular Biology | 2012
Durga M. Chadalavada; Andrea L. Cerrone-Szakal; Jennifer L. Wilcox; Nathan A. Siegfried; Philip C. Bevilacqua
Small ribozymes such as the hairpin, hammerhead, VS, glm S, and hepatitis delta virus (HDV) are self-cleaving RNAs that are typically characterized by kinetics and structural methods. Working with these RNAs requires attention to numerous experimental details. In this chapter we focus on four different experimental aspects of ribozyme studies: preparing the RNA, mapping its structure with reverse transcription and end-labeled techniques, solvent isotope experiments, and co-transcriptional cleavage assays. Although the focus of these methods is the HDV ribozyme, the methods should be applicable to other ribozymes.
Quarterly Reviews of Biophysics | 2007
Philip C. Bevilacqua; Andrea L. Cerrone-Szakal; Nathan A. Siegfried
The RNA World hypothesis posits that life emerged from self-replicating RNA molecules. For any single biopolymer to be the basis for life, it must both store information and perform diverse functions. It is well known that RNA can store information. Advances in recent years have revealed that RNA can exhibit remarkable functional versatility as well. In an effort to judge the functional versatility of RNA and thereby the plausibility that RNA was at one point the basis for life, a statistical chemical approach is adopted. Essential biological functions are reduced to simple molecular models in a minimalist, biopolymer-independent fashion. The models dictate requisite states, populations of states, and physical and chemical changes occurring between the states. Next, equations are derived from the models, which lead to complex phenomenological constants such as observed and functional constants that are defined in terms of familiar elementary chemical descriptors: intrinsic rate constants, microscopic ligand equilibrium constants, secondary structure stability, and ligand concentration. Using these equations, simulations of functional behavior are performed. These functional models provide practical frameworks for fitting and organizing real data on functional RNAs such as ribozymes and riboswitches. At the same time, the models allow the suitability of RNA as a basis for life to be judged. We conclude that RNA, while inferior to extant proteins in most, but not all, functional respects, may be more versatile than proteins, performing a wider range of elementary biological functions at a tolerable level. Inspection of the functional models and various RNA structures uncovers several surprising ways in which the nucleobases can conspire to afford chemical catalysis and evolvability. These models support the plausibility that RNA, or a closely related informational biopolymer, could serve as the basis for a fairly simple form of life.