Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan A. Yates is active.

Publication


Featured researches published by Nathan A. Yates.


Journal of the American Society for Mass Spectrometry | 2003

Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation

Ziqiang Guan; Nathan A. Yates; Ray Bakhtiar

Electron capture dissociation (ECD) and collision-induced dissociation (CID), the two complementary fragmentation techniques, are demonstrated to be effective in the detection and localization of the methionine sulfoxide [Met(O)] residues in peptides using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The presence of Met(O) can be easily recognized in the low-energy CID spectrum showing the characteristic loss of methanesulfenic acid (CH3SOH, 64 Da) from the side chain of Met(O). The position of Met(O) can then be localized by ECD which is capable of providing extensive peptide backbone fragmentation without detaching the labile Met(O) side chain. We studied CID and ECD of several Met(O)-containing peptides that included the 44-residue human growth hormone-releasing factor (GRF) and the human atrial natriuretic peptide (ANP). The distinction and complementarity of the two fragmentation techniques were particularly remarkable in their effects on ANP, a disulfide bond-containing peptide. While the predominant fragmentation pathway in CID of ANP was the loss of CH3SOH (64 Da) from the molecular ion, ECD of ANP resulted in many sequence-informative products, including those from cleavages within the disulfide-bonded cyclic structure, to allow for the direct localization of Met(O) without the typical procedures for disulfide bond reduction followed by -SH alkylation.


Molecular & Cellular Proteomics | 2007

The Association of Biomolecular Resource Facilities Proteomics Research Group 2006 Study Relative Protein Quantitation

Christoph W. Turck; Arnold M. Falick; Jeffrey A. Kowalak; William S. Lane; Kathryn S. Lilley; Brett S. Phinney; Susan T. Weintraub; H. Ewa Witkowska; Nathan A. Yates

The determination of differences in relative protein abundance is a critical aspect of proteomics research that is increasingly used to answer diverse biological questions. The Association of Biomolecular Resource Facilities Proteomics Research Group 2006 study was a quantitative proteomics project in which the aim was to determine the identity and the relative amounts of eight proteins in two mixtures. There are numerous methodologies available to study the relative abundance of proteins between samples, but to date, there are few examples of studies that have compared these different approaches. For the 2006 Proteomics Research Group study, there were 52 participants who used a wide variety of gel electrophoresis-, HPLC-, and mass spectrometry-based methods for relative quantitation. The quantitative data arising from this study were evaluated along with several other experimental details relevant to the methodologies used.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry

Matthew T. Mazur; Daniel S. Spellman; Andy Liaw; Nathan A. Yates; Ronald C. Hendrickson

Top-down mass spectrometry holds tremendous potential for the characterization and quantification of intact proteins, including individual protein isoforms and specific posttranslationally modified forms. This technique does not require antibody reagents and thus offers a rapid path for assay development with increased specificity based on the amino acid sequence. Top-down MS is efficient whereby intact protein mass measurement, purification by mass separation, dissociation, and measurement of product ions with ppm mass accuracy occurs on the seconds to minutes time scale. Moreover, as the analysis is based on the accurate measurement of an intact protein, top-down mass spectrometry opens a research paradigm to perform quantitative analysis of “unknown” proteins that differ in accurate mass. As a proof of concept, we have applied differential mass spectrometry (dMS) to the top-down analysis of apolipoproteins isolated from human HDL3. The protein species at 9415.45 Da demonstrates an average fold change of 4.7 (p-value 0.017) and was identified as an O-glycosylated form of apolipoprotein C-III [NANA-(2 → 3)-Gal-β(1 → 3)-GalNAc, +656.2037 Da], a protein associated with coronary artery disease. This work demonstrates the utility of top-down dMS for quantitative analysis of intact protein mixtures and holds potential for facilitating a better understanding of HDL biology and complex biological systems at the protein level.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Lysine 63-linked polyubiquitination is required for EGF receptor degradation

Fangtian Huang; Xuemei Zeng; Woong Kim; Manimalha Balasubramani; Arola Fortian; Steven P. Gygi; Nathan A. Yates; Alexander Sorkin

Significance Many proteins are modified by the covalent attachment of a small polypeptide called ubiquitin to their lysine residues. Lysines in ubiquitin itself are further ubiquitinated, leading to formation of ubiquitin chains. Single ubiquitins and ubiquitin chains attached to integral membrane proteins, such as receptors, transporters, and channels, serve as molecular signals mediating endocytosis of these proteins and their subsequent targeting to lysosomes for degradation. This work uses quantitative mass spectrometry to show that activated EGF receptor is ubiquitinated by one to two short polyubiquitin chains linked via ubiquitin lysine 63 or conjugated with a single monoubiquitin. It is demonstrated that these Lys63-linked polyubiquitin chains are necessary for efficient targeting of EGF receptor to the lysosomal degradation pathway. Ubiquitination mediates endocytosis and endosomal sorting of various signaling receptors, transporters, and channels. However, the relative importance of mono- versus polyubiquitination and the role of specific types of polyubiquitin linkages in endocytic trafficking remain controversial. We used mass spectrometry-based targeted proteomics to show that activated epidermal growth factor receptor (EGFR) is ubiquitinated by one to two short (two to three ubiquitins) polyubiquitin chains mainly linked via lysine 63 (K63) or conjugated with a single monoubiquitin. Multimonoubiquitinated EGFR species were not found. To directly test whether K63 polyubiquitination is necessary for endocytosis and post-endocytic sorting of EGFR, a chimeric protein, in which the K63 linkage-specific deubiquitination enzyme AMSH [associated molecule with the Src homology 3 domain of signal transducing adaptor molecule (STAM)] was fused to the carboxyl terminus of EGFR, was generated. MS analysis of EGFR-AMSH ubiquitination demonstrated that the fraction of K63 linkages was substantially reduced, whereas relative amounts of monoubiquitin and K48 linkages increased, compared with that of wild-type EGFR. EGFR-AMSH was efficiently internalized into early endosomes, but, importantly, the rates of ligand-induced sorting to late endosomes and degradation of EGFR-AMSH were dramatically decreased. The slow degradation of EGFR-AMSH resulted in the sustained signaling activity of this chimeric receptor. Ubiquitination patterns, rate of endosomal sorting, and signaling kinetics of EGFR fused with the catalytically inactive mutant of AMSH were reversed to normal. Altogether, the data are consistent with the model whereby short K63-linked polyubiquitin chains but not multimonoubiquitin provide an increased avidity for EGFR interactions with ubiquitin adaptors, thus allowing rapid sorting of activated EGFR to the lysosomal degradation pathway.


Journal of Biological Chemistry | 2014

Growth Arrest by the Antitumor Steroidal Lactone Withaferin A in Human Breast Cancer Cells Is Associated with Down-regulation and Covalent Binding at Cysteine 303 of β-Tubulin

Marie Lue Antony; Joomin Lee; Eun Ryeong Hahm; Su Hyeong Kim; Adam I. Marcus; Vandana Kumari; Xinhua Ji; Zhen Yang; Courtney L. Vowell; Peter Wipf; Guy Uechi; Nathan A. Yates; Guillermo Romero; Saumendra N. Sarkar

Background: The tubulin microtubule network remains an attractive anticancer target. Results: The antitumor steroidal lactone withaferin A (WA) down-regulates tubulin and binds to Cys303 of β-tubulin. Conclusion: Tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. Significance: Favorable safety and pharmacokinetic profiles merit clinical investigation of WA for prevention and/or treatment of breast cancer. Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys303 of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.


Journal of Proteome Research | 2010

Application of an End-to-End Biomarker Discovery Platform to Identify Target Engagement Markers in Cerebrospinal Fluid by High Resolution Differential Mass Spectrometry

Cloud P. Paweletz; Matthew C. Wiener; Andrey Bondarenko; Nathan A. Yates; Qinghua Song; Andy Liaw; Anita Y. H. Lee; Brandon Hunt; Ernst S. Henle; Fanyu Meng; Holly Sleph; Marie A. Holahan; Sethu Sankaranarayanan; Adam J. Simon; Robert E. Settlage; Jeffrey R. Sachs; Mark S. Shearman; Alan B. Sachs; Jacquelynn J. Cook; Ronald C. Hendrickson

The rapid identification of protein biomarkers in biofluids is important to drug discovery and development. Here, we describe a general proteomic approach for the discovery and identification of proteins that exhibit a statistically significant difference in abundance in cerebrospinal fluid (CSF) before and after pharmacological intervention. This approach, differential mass spectrometry (dMS), is based on the analysis of full scan mass spectrometry data. The dMS workflow does not require complex mixing and pooling strategies, or isotope labeling techniques. Accordingly, clinical samples can be analyzed individually, allowing the use of longitudinal designs and within-subject data analysis in which each subject acts as its own control. As a proof of concept, we performed multifactorial dMS analyses on CSF samples drawn at 6 time points from n = 6 cisterna magna ported (CMP) rhesus monkeys treated with 2 potent gamma secretase inhibitors (GSI) or comparable vehicle in a 3-way crossover study that included a total of 108 individual CSF samples. Using analysis of variance and statistical filtering on the aligned and normalized LC-MS data sets, we detected 26 features that were significantly altered in CSF by drug treatment. Of those 26 features, which belong to 10 distinct isotopic distributions, 20 were identified by MS/MS as 7 peptides from CD99, a cell surface protein. Six features from the remaining 3 isotopic distributions were not identified. A subsequent analysis showed that the relative abundance of these 26 features showed the same temporal profile as the ELISA measured levels of CSF A beta 42 peptide, a known pharmacodynamic marker for gamma-secretase inhibition. These data demonstrate that dMS is a promising approach for the discovery, quantification, and identification of candidate target engagement biomarkers in CSF.


Nature Communications | 2014

HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β.

Qingming Fang; Burcu Inanc; Sandy Schamus; Xiao-hong Wang; Leizhen Wei; Ashley R. Brown; David Svilar; Kelsey F. Sugrue; Eva M. Goellner; Xuemei Zeng; Nathan A. Yates; Li Lan; Conchita Vens; Robert W. Sobol

Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase β (Polβ) and XRCC1 is thought to facilitate repair by recruiting Polβ to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polβ. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polβ and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance.


Biological Psychiatry | 2015

Altered Glutamate Protein Co-Expression Network Topology Linked to Spine Loss in the Auditory Cortex of Schizophrenia

Matthew L. MacDonald; Ying Ding; Jason T. Newman; Scott E. Hemby; Peter Penzes; David A. Lewis; Nathan A. Yates; Robert A. Sweet

BACKGROUND Impaired glutamatergic signaling is believed to underlie auditory cortex pyramidal neuron dendritic spine loss and auditory symptoms in schizophrenia. Many schizophrenia risk loci converge on the synaptic glutamate signaling network. We therefore hypothesized that alterations in glutamate signaling protein expression and co-expression network features are present in schizophrenia. METHODS Gray matter homogenates were prepared from auditory cortex gray matter of 22 schizophrenia and 23 matched control subjects, a subset of whom had been previously assessed for dendritic spine density. One hundred fifty-five selected synaptic proteins were quantified by targeted mass spectrometry. Protein co-expression networks were constructed using weighted gene co-expression network analysis. RESULTS Proteins with evidence for altered expression in schizophrenia were significantly enriched for glutamate signaling pathway proteins (GRIA4, GRIA3, ATP1A3, and GNAQ). Synaptic protein co-expression was significantly decreased in schizophrenia with the exception of a small group of postsynaptic density proteins, whose co-expression increased and inversely correlated with spine density in schizophrenia subjects. CONCLUSIONS We observed alterations in the expression of glutamate signaling pathway proteins. Among these, the novel observation of reduced ATP1A3 expression is supported by strong genetic evidence indicating it may contribute to psychosis and cognitive impairment phenotypes. The observations of altered protein network topology further highlight the complexity of glutamate signaling network pathology in schizophrenia and provide a framework for evaluating future experiments to model the contribution of genetic risk to disease pathology.


Bioanalysis | 2014

An ultrasensitive method for the quantitation of active and inactive GLP-1 in human plasma via immunoaffinity LC-MS/MS

Derek L Chappell; Anita Yh Lee; Jose Castro-Perez; Haihong Zhou; Thomas P. Roddy; Sudha S Shankar; Nathan A. Yates; Weixun Wang; Omar Laterza

BACKGROUND Measuring endogenous levels of incretin hormones, like GLP-1, is critical in the development of antidiabetic compounds. However, the assays used to measure these molecules often have analytical issues. RESULTS We have developed an ultrasensitive, highly-selective immunoaffinity LC-MS/MS (IA LC-MS/MS) assay capable of quantitating endogenous levels of active (7-36 amide) and inactive (9-36 amide) GLP-1 in human plasma. We performed fit-for-purpose validation of the assay by assessing the following assay performance characteristics: inter-assay precision, sensitivity, spike recovery, dilution linearity, absolute recovery, matrix effect, immunoprecipitation efficiency, and food effect. CONCLUSION We have developed a robust analytical method for the quantitation of endogenous active and inactive GLP-1 in human plasma. In addition, we employed this method to measure the typical changes in GLP-1 levels after food intake. The sensitivity of this assay is better than another LC-MS/MS GLP-1 assay previously reported and many commercially available immunoassays. This important analytical tool could be used to qualify and/or harmonize the different immunoassays used for the quantitation of GLP-1.


Clinical Chemistry | 2012

Measurement of Fractional Synthetic Rates of Multiple Protein Analytes by Triple Quadrupole Mass Spectrometry

Anita Y. H. Lee; Nathan A. Yates; Marina Ichetovkin; Ekaterina G. Deyanova; Katie Southwick; Timothy S. Fisher; Weixun Wang; James Loderstedt; Nykia D. Walker; Haihong Zhou; Xuemei Zhao; Carl P. Sparrow; Brian K. Hubbard; Daniel J. Rader; Ayesha Sitlani; John S. Millar; Ronald C. Hendrickson

BACKGROUND Current approaches to measure protein turnover that use stable isotope-labeled tracers via GC-MS are limited to a small number of relatively abundant proteins. We developed a multiplexed liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM) assay to measure protein turnover and compared the fractional synthetic rates (FSRs) for 2 proteins, VLDL apolipoprotein B100 (VLDL apoB100) and HDL apoA-I, measured by both methods. We applied this technique to other proteins for which kinetics are not readily measured with GC-MS. METHODS Subjects were given a primed-constant infusion of [5,5,5-D(3)]-leucine (D(3)-leucine) for 15 h with blood samples collected at selected time points. Apolipoproteins isolated by SDS-PAGE from lipoprotein fractions were analyzed by GC-MS or an LC-SRM assay designed to measure the M+3/M+0 ratio at >1% D(3)-leucine incorporation. We calculated the FSR for each apolipoprotein by curve fitting the tracer incorporation data from each subject. RESULTS The LC-SRM method was linear over the range of tracer enrichment values tested and highly correlated with GC-MS (R(2) > 0.9). The FSRs determined from both methods were similar for HDL apoA-I and VLDL apoB100. We were able to apply the LC-SRM approach to determine the tracer enrichment of multiple proteins from a single sample as well as proteins isolated from plasma after immunoprecipitation. CONCLUSIONS The LC-SRM method provides a new technique for measuring the enrichment of proteins labeled with stable isotopes. LC-SRM is amenable to a multiplexed format to provide a relatively rapid and inexpensive means to measure turnover of multiple proteins simultaneously.

Collaboration


Dive into the Nathan A. Yates's collaboration.

Top Co-Authors

Avatar

Ronald C. Hendrickson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xuemei Zeng

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ying Ding

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Robert E. Settlage

Virginia Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge