Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan Burgon is active.

Publication


Featured researches published by Nathan Burgon.


Circulation | 2009

Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation.

Robert S. Oakes; Troy J. Badger; Eugene Kholmovski; Nazem Akoum; Nathan Burgon; Eric N. Fish; Joshua Blauer; Swati N. Rao; Edward DiBella; Nathan M. Segerson; Marcos Daccarett; Jessiciah Windfelder; Christopher McGann; Dennis L. Parker; Robert S. MacLeod; Nassir F. Marrouche

Background— Atrial fibrillation (AF) is associated with diffuse left atrial fibrosis and a reduction in endocardial voltage. These changes are indicators of AF severity and appear to be predictors of treatment outcome. In this study, we report the utility of delayed-enhancement magnetic resonance imaging (DE-MRI) in detecting abnormal atrial tissue before radiofrequency ablation and in predicting procedural outcome. Methods and Results— Eighty-one patients presenting for pulmonary vein antrum isolation for treatment of AF underwent 3-dimensional DE-MRI of the left atrium before the ablation. Six healthy volunteers also were scanned. DE-MRI images were manually segmented to isolate the left atrium, and custom software was implemented to quantify the spatial extent of delayed enhancement, which was then compared with the regions of low voltage from electroanatomic maps from the pulmonary vein antrum isolation procedure. Patients were assessed for AF recurrence at least 6 months after pulmonary vein antrum isolation, with an average follow-up of 9.6±3.7 months (range, 6 to 19 months). On the basis of the extent of preablation enhancement, 43 patients were classified as having minimal enhancement (average enhancement, 8.0±4.2%), 30 as having moderate enhancement (21.3±5.8%), and 8 as having extensive enhancement (50.1±15.4%). The rate of AF recurrence was 6 patients (14.0%) with minimal enhancement, 13 (43.3%) with moderate enhancement, and 6 (75%) with extensive enhancement (P<0.001). Conclusions— DE-MRI provides a noninvasive means of assessing left atrial myocardial tissue in patients suffering from AF and might provide insight into the progress of the disease. Preablation DE-MRI holds promise for predicting responders to AF ablation and may provide a metric of overall disease progression.


JAMA | 2014

Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation: The DECAAF Study

Nassir F. Marrouche; David J. Wilber; Gerhard Hindricks; Pierre Jaïs; Nazem Akoum; Francis E. Marchlinski; Eugene Kholmovski; Nathan Burgon; Nan Hu; Lluis Mont; Thomas Deneke; Mattias Duytschaever; Thomas Neumann; Moussa Mansour; Christian Mahnkopf; Bengt Herweg; Emile G. Daoud; Erik Wissner; Paul M. Bansmann; Johannes Brachmann

IMPORTANCE Left atrial fibrosis is prominent in patients with atrial fibrillation (AF). Extensive atrial tissue fibrosis identified by delayed enhancement magnetic resonance imaging (MRI) has been associated with poor outcomes of AF catheter ablation. OBJECTIVE To characterize the feasibility of atrial tissue fibrosis estimation by delayed enhancement MRI and its association with subsequent AF ablation outcome. DESIGN, SETTING, AND PARTICIPANTS Multicenter, prospective, observational cohort study of patients diagnosed with paroxysmal and persistent AF (undergoing their first catheter ablation) conducted between August 2010 and August 2011 at 15 centers in the United States, Europe, and Australia. Delayed enhancement MRI images were obtained up to 30 days before ablation. MAIN OUTCOMES AND MEASURES Fibrosis quantification was performed at a core laboratory blinded to the participating center, ablation approach, and procedure outcome. Fibrosis blinded to the treating physicians was categorized as stage 1 (<10% of the atrial wall), 2 (≥10%-<20%), 3 (≥20%-<30%), and 4 (≥30%). Patients were followed up for recurrent arrhythmia per current guidelines using electrocardiography or ambulatory monitor recording and results were analyzed at a core laboratory. Cumulative incidence of recurrence was estimated by stage at days 325 and 475 after a 90-day blanking period (standard time allowed for arrhythmias related to ablation-induced inflammation to subside) and the risk of recurrence was estimated (adjusting for 10 demographic and clinical covariates). RESULTS Atrial tissue fibrosis estimation by delayed enhancement MRI was successfully quantified in 272 of 329 enrolled patients (57 patients [17%] were excluded due to poor MRI quality). There were 260 patients who were followed up after the blanking period (mean [SD] age of 59.1 [10.7] years, 31.5% female, 64.6% with paroxysmal AF). For recurrent arrhythmia, the unadjusted overall hazard ratio per 1% increase in left atrial fibrosis was 1.06 (95% CI, 1.03-1.08; P < .001). Estimated unadjusted cumulative incidence of recurrent arrhythmia by day 325 for stage 1 fibrosis was 15.3% (95% CI, 7.6%-29.6%); stage 2, 32.6% (95% CI, 24.3%-42.9%); stage 3, 45.9% (95% CI, 35.5%-57.5%); and stage 4, 51.1% (95% CI, 32.8%-72.2%) and by day 475 was 15.3% (95% CI, 7.6%-29.6%), 35.8% (95% CI, 26.2%-47.6%), 45.9% (95% CI, 35.6%-57.5%), and 69.4% (95% CI, 48.6%-87.7%), respectively. Similar results were obtained after covariate adjustment. The addition of fibrosis to a recurrence prediction model that includes traditional clinical covariates resulted in an improved predictive accuracy with the C statistic increasing from 0.65 to 0.69 (risk difference of 0.05; 95% CI, 0.01-0.09). CONCLUSIONS AND RELEVANCE Among patients with AF undergoing catheter ablation, atrial tissue fibrosis estimated by delayed enhancement MRI was independently associated with likelihood of recurrent arrhythmia. The clinical implications of this association warrant further investigation.


Circulation-cardiovascular Imaging | 2010

Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI.

Suman Kuppahally; Nazem Akoum; Nathan Burgon; Troy J. Badger; Eugene Kholmovski; Sathya Vijayakumar; Swati N. Rao; Joshua Blauer; Eric N. Fish; Edward DiBella; Robert S. MacLeod; Christopher McGann; Sheldon E. Litwin; Nassir F. Marrouche

Background—Atrial fibrillation (AF) is a progressive condition that begins with hemodynamic and/or structural changes in the left atrium (LA) and evolves through paroxysmal and persistent stages. Because of limitations with current noninvasive imaging techniques, the relationship between LA structure and function is not well understood. Methods and Results—Sixty-five patients (age, 61.2±14.2 years; 67% men) with paroxysmal (44%) or persistent (56%) AF underwent 3D delayed-enhancement MRI. Segmentation of the LA wall was performed and degree of enhancement (fibrosis) was determined using a semiautomated quantification algorithm. Two-dimensional echocardiography and longitudinal LA strain and strain rate during ventricular systole with velocity vector imaging were obtained. Mean fibrosis was 17.8±14.5%. Log-transformed fibrosis values correlated inversely with LA midlateral strain (r=−0.5, P=0.003) and strain rate (r=−0.4, P<0.005). Patients with persistent AF as compared with paroxysmal AF had more fibrosis (22±17% versus 14±9%, P=0.04) and lower midseptal (27±14% versus 38±16%, P=0.01) and midlateral (35±16% versus 45±14% P=0.03) strains. Multivariable stepwise regression showed that midlateral strain (r=−0.5, P=0.006) and strain rate (r=−0.4, P=0.01) inversely predicted the extent of fibrosis independent of other echocardiographic parameters and the rhythm during imaging. Conclusions—LA wall fibrosis by delayed-enhancement MRI is inversely related to LA strain and strain rate, and these are related to the AF burden. Echocardiographic assessment of LA structural and functional remodeling is quick and feasible and may be helpful in predicting outcomes in AF.


Heart Rhythm | 2010

Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: Implications for disease progression and response to catheter ablation

Christian Mahnkopf; Troy J. Badger; Nathan Burgon; Marcos Daccarett; Thomas S. Haslam; Christopher T. Badger; Christopher McGann; Nazem Akoum; Eugene Kholmovski; Robert S. MacLeod; Nassir F. Marrouche

BACKGROUND Lone atrial fibrillation (AF) is thought to be a benign type or an early stage of the disease. OBJECTIVE This study sought to compare the left atrium (LA) substrate using delayed-enhanced magnetic resonance imaging (DE-MRI) in patients with lone AF versus those with comorbidities. METHODS Forty of 333 included patients met criteria for lone AF. All patients underwent DE-MRI to quantify atrial fibrosis as a marker for structural remodeling (SRM) and underwent catheter ablation. Based on the degree of SRM, patients were staged into 4 groups: Utah I (≤5% LA wall enhancement), Utah II (>5% to ≤20%), Utah III (>20% to ≤35%), or Utah IV (>35%). RESULTS Distribution in Utah I to IV was comparable in patients with lone AF and non-lone AF. In both groups, a number of patients showed extensive SRM. Mean enhancement (14.08 ± 8.94 vs. 16.94 ± 11.37) was not significantly different between the 2 groups (P = .0721). In the lone AF group, catheter ablation was successful in suppressing AF in all of Utah I, 81.82% of Utah II, 62.5% of Utah III, and none of Utah IV patients. Similar results were achieved in the non-lone AF group. Outcome after ablation was significantly dependent on the SRM of the LA (P < .001). CONCLUSION The degree of LA structural remodeling as detected using DE-MRI is independent of AF type and associated comorbidities. Selecting appropriate treatment candidates based on the quality and quantity of atrial fibrosis using DE-MRI would improve procedural outcome and avoid unnecessary intervention.


Journal of the American College of Cardiology | 2011

Association of Left Atrial Fibrosis Detected by Delayed-Enhancement Magnetic Resonance Imaging and the Risk of Stroke in Patients With Atrial Fibrillation

Marcos Daccarett; Troy J. Badger; Nazem Akoum; Nathan Burgon; Christian Mahnkopf; Gaston Vergara; Eugene Kholmovski; Christopher McGann; Dennis L. Parker; Johannes Brachmann; Robert S. MacLeod; Nassir F. Marrouche

OBJECTIVES This study tried to determine the association between left atrial (LA) fibrosis, detected using delayed-enhanced magnetic resonance imaging (DE-MRI), and the CHADS(2) score (point system based on individual clinical risk factors including congestive heart failure, hypertension, age, diabetes, and prior stroke) variables, specifically stroke. BACKGROUND In patients with atrial fibrillation (AF), conventional markers for the risk of stroke base their higher predictive effect on clinical features, particularly previous stroke history, and not individual LA pathophysiological properties. We aimed to determine the association between LA fibrosis, detected using DE-MRI, and the CHADS(2) score variables, specifically stroke. METHODS Patients with AF who presented to the AF clinic and received a DE-MRI of the LA were evaluated. Their risk factor profiles, including a CHADS(2) score, were catalogued. The degree of LA fibrosis was determined as a percentage of the LA area. Any history of previous strokes, warfarin use, or cerebrovascular disease was recorded. RESULTS A total of 387 patients, having a mean age of 65 ± 12 years, 36.8% female, were included in this study. A history of previous stroke was present in 36 (9.3%) patients. Those patients with previous strokes had a significantly higher percentage of LA fibrosis (24.4 ± 12.4% vs. 16.2 ± 9.9%, p < 0.01). A larger amount of LA fibrosis was also seen in those patients with a higher CHADS(2) score (≥ 2: 18.7 ± 11.4 vs. <2: 14.7 ± 9.2, p < 0.01). A logistic regression analysis of all variables except strokes (CHAD score) demonstrated that LA fibrosis independently predicted cerebrovascular events (p = 0.002) and significantly increased the predictive performance of the score (area under the curve = 0.77). CONCLUSIONS Our preliminary, multicenter results suggest DE-MRI-based detection of LA fibrosis is independently associated with prior history of strokes. We propose that the amount of DE-MRI-determined LA fibrosis could represent a marker for stroke and a possible therapeutic target with potential applicability for clinical treatment for patients with AF.


Circulation-arrhythmia and Electrophysiology | 2014

Atrial Fibrillation Ablation Outcome Is Predicted by Left Atrial Remodeling on MRI

Christopher McGann; Nazem Akoum; Amit N. Patel; Eugene Kholmovski; Patricia Revelo; Kavitha Damal; Brent D. Wilson; Josh Cates; Alexis Harrison; Ravi Ranjan; Nathan Burgon; Tom Greene; Daniel Kim; Edward DiBella; Dennis L. Parker; Robert S. MacLeod; Nassir F. Marrouche

Background—Although catheter ablation therapy for atrial fibrillation (AF) is becoming more common, results vary widely, and patient selection criteria remain poorly defined. We hypothesized that late gadolinium enhancement MRI (LGE-MRI) can identify left atrial (LA) wall structural remodeling (SRM) and stratify patients who are likely or not to benefit from ablation therapy. Methods and Results—LGE-MRI was performed on 426 consecutive patients with AF without contraindications to MRI before undergoing their first ablation procedure and on 21 non-AF control subjects. Patients were categorized by SRM stage (I–IV) based on the percentage of LA wall enhancement for correlation with procedure outcomes. Histological validation of SRM was performed comparing LGE-MRI with surgical biopsy. A total of 386 patients (91%) with adequate LGE-MRI scans were included in the study. After ablation, 123 patients (31.9%) experienced recurrent atrial arrhythmias during the 1-year follow-up. Recurrent arrhythmias (failed ablations) occurred at higher SRM stages with 28 of 133 (21.0%) in stage I, 40 of 140 (29.3%) in stage II, 24 of 71 (33.8%) in stage III, and 30 of 42 (71.4%) in stage IV. In multivariate analysis, ablation outcome was best predicted by advanced SRM stage (hazard ratio, 4.89; P<0.0001) and diabetes mellitus (hazard ratio, 1.64; P=0.036), whereas increased LA volume and persistent AF were not significant predictors. LA wall enhancement was significantly greater in patients with AF versus non-AF controls (16.6±11.2% versus 3.1±1.9%; P<0.0001). Histological evidence of remodeling from surgical biopsy specimens correlated with SRM on LGE-MRI. Conclusions—Atrial SRM is identified on LGE-MRI, and extensive LGE (≥30% LA wall enhancement) predicts poor response to catheter ablation therapy for AF.


Circulation-arrhythmia and Electrophysiology | 2010

Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures.

Troy J. Badger; Marcos Daccarett; Nazem Akoum; Yaw A. Adjei-Poku; Nathan Burgon; Thomas S. Haslam; Saul Kalvaitis; Suman Kuppahally; Gaston Vergara; Lori McMullen; Paul A. Anderson; Eugene Kholmovski; Robert S. MacLeod; Nassir F. Marrouche

Background—We evaluated scar lesions after initial and repeat catheter ablation of atrial fibrillation (AF) and correlated these regions to low-voltage tissue on repeat electroanatomic mapping. We also identified gaps in lesion sets that could be targeted and closed during repeat procedures. Methods and Results—One hundred forty-four patients underwent AF ablation and received a delayed-enhancement MRI at 3 months after ablation. The number of pulmonary veins (PV) with circumferential lesions were assessed and correlated with procedural outcome. Eighteen patients with AF recurrence underwent repeat ablation. MRI scar regions were compared with electroanatomic maps during the repeat procedure. Regions of incomplete scar around the PVs were then identified and targeted during repeat ablation to ensure complete circumferential lesions. After the initial procedure, complete circumferential scarring of all 4 PV antrum (PVA) was achieved in only 7% of patients, with the majority of patients (69%) having <2 completely scarred PVA. After the first procedure, the number of PVs with complete circumferential scarring and total left atrial wall (LA) scar burden was associated with better clinical outcome. Patients with successful AF termination had higher average total left atrial wall scar of 16.4%±9.8 (P=0.004) and percent PVA scar of 66.2±25.4 (P=0.01) compared with patients with AF recurrence who had an average total LA wall scar 11.3%±8.1 and PVA percent scar 50.0±24.7. In patients who underwent repeat ablation, the PVA scar percentage was 56.1%±21.4 after the first procedure compared with 77.2%±19.5 after the second procedure. The average total LA scar after the first ablation was 11.0%±4.1, whereas the average total LA scar after second ablation was 21.2%±7.4. All patients had an increased number of completely scarred pulmonary vein antra after the second procedure. MRI scar after the first procedure and low-voltage regions on electroanatomic mapping obtained during repeat ablation demonstrated a positive quantitative correlation of R2=0.57. Conclusions—Complete circumferential PV scarring difficult to achieve but is associated with better clinical outcome. Delayed-enhancement MRI can accurately define scar lesions after AF ablation and can be used to target breaks in lesion sets during repeat ablation.Background— We evaluated scar lesions after initial and repeat catheter ablation of atrial fibrillation (AF) and correlated these regions to low-voltage tissue on repeat electroanatomic mapping. We also identified gaps in lesion sets that could be targeted and closed during repeat procedures. Methods and Results— One hundred forty-four patients underwent AF ablation and received a delayed-enhancement MRI at 3 months after ablation. The number of pulmonary veins (PV) with circumferential lesions were assessed and correlated with procedural outcome. Eighteen patients with AF recurrence underwent repeat ablation. MRI scar regions were compared with electroanatomic maps during the repeat procedure. Regions of incomplete scar around the PVs were then identified and targeted during repeat ablation to ensure complete circumferential lesions. After the initial procedure, complete circumferential scarring of all 4 PV antrum (PVA) was achieved in only 7% of patients, with the majority of patients (69%) having <2 completely scarred PVA. After the first procedure, the number of PVs with complete circumferential scarring and total left atrial wall (LA) scar burden was associated with better clinical outcome. Patients with successful AF termination had higher average total left atrial wall scar of 16.4%±9.8 ( P =0.004) and percent PVA scar of 66.2±25.4 ( P =0.01) compared with patients with AF recurrence who had an average total LA wall scar 11.3%±8.1 and PVA percent scar 50.0±24.7. In patients who underwent repeat ablation, the PVA scar percentage was 56.1%±21.4 after the first procedure compared with 77.2%±19.5 after the second procedure. The average total LA scar after the first ablation was 11.0%±4.1, whereas the average total LA scar after second ablation was 21.2%±7.4. All patients had an increased number of completely scarred pulmonary vein antra after the second procedure. MRI scar after the first procedure and low-voltage regions on electroanatomic mapping obtained during repeat ablation demonstrated a positive quantitative correlation of R 2=0.57. Conclusions— Complete circumferential PV scarring difficult to achieve but is associated with better clinical outcome. Delayed-enhancement MRI can accurately define scar lesions after AF ablation and can be used to target breaks in lesion sets during repeat ablation.


American Heart Journal | 2010

Echocardiographic left atrial reverse remodeling after catheter ablation of atrial fibrillation is predicted by preablation delayed enhancement of left atrium by magnetic resonance imaging

Suman Kuppahally; Nazem Akoum; Troy J. Badger; Nathan Burgon; Thomas S. Haslam; Eugene Kholmovski; Robert S. MacLeod; Christopher McGann; Nassir F. Marrouche

BACKGROUND Atrial fibrosis is a hallmark of atrial structural remodeling (SRM) and leads to structural and functional impairment of left atrial (LA) and persistence of atrial fibrillation (AF). This study was conducted to assess LA reverse remodeling after catheter ablation of AF in mild and moderate-severe LA SRM. METHODS Catheter ablation was performed in 68 patients (age 62 ± 14 years, 68% males) with paroxysmal (n = 26) and persistent (n = 42) AF. The patients were divided into group 1 with mild LA SRM (<10%, n = 31) and group 2 with moderate-severe LA SRM (>10%, n = 37) by delayed enhancement magnetic resonance imaging (DEMRI). Two-dimensional echocardiography, LA strain, and strain rate during left ventricular systole by velocity vector imaging were performed pre and at 6 ± 3 months postablation. The long-term outcome was monitored for 12 months. RESULTS Patients in group 1 were younger (57 ± 15 vs 66 ± 13 years, P = .009) with a male predominance (80% vs 57%, P < .05) as compared to group 2. Postablation, group 1 had significant increase in average LA strain (Δ↑: 14% vs 4%, P < .05) and strain rate (Δ↑: 0.5 vs 0.1 cm/s, P < .05) as compared to group 2. There was a trend toward more patients with persistent AF in group 2 (68% vs 55%, P = .2), but it was not statistically significant. Group 2 had more AF recurrences (41% vs 16%, P = .02) at 12 months after ablation. CONCLUSION Mild preablation LA SRM by DEMRI predicts favorable LA structural and functional reverse remodeling and long-term success after catheter ablation of AF, irrespective of the paroxysmal or persistent nature of AF.


Journal of Cardiovascular Electrophysiology | 2010

Magnetic Resonance Imaging‐Confirmed Ablative Debulking of the Left Atrial Posterior Wall and Septum for Treatment of Persistent Atrial Fibrillation: Rationale and Initial Experience

Nathan M. Segerson; Marcos Daccarett; Troy J. Badger; Akram Shabaan; Nazem Akoum; Eric N. Fish; Swati N. Rao; Nathan Burgon; Yaw A. Adjei-Poku; Eugene Kholmovski; Sathya Vijayakumar; Edward DiBella; Robert S. MacLeod; Nassir F. Marrouche

LA Debulking for Atrial Fibrillation. Introduction: Though pulmonary vein (PV) isolation has been widely adopted for treatment of atrial fibrillation (AF), recurrence rates remain unacceptably high with persistent and longstanding AF. As evidence emerges for non‐PV substrate changes in the pathogenesis of AF, more extensive ablation strategies need further study.


Heart Rhythm | 2009

Temporal left atrial lesion formation after ablation of atrial fibrillation.

Troy J. Badger; Robert S. Oakes; Marcos Daccarett; Nathan Burgon; Nazem Akoum; Eric N. Fish; Joshua Blauer; Swati N. Rao; Yaw A. Adjei-Poku; Eugene Kholmovski; Sathya Vijayakumar; Edward V. R. Di Bella; Robert S. MacLeod; Nassir F. Marrouche

BACKGROUND Atrial fibrillation (AF) ablation uses radiofrequency (RF) energy to induce thermal damage to the left atrium (LA) in an attempt to isolate AF circuits. This injury can be seen using delayed enhancement magnetic resonance imaging (DE-MRI). OBJECTIVE The purpose of this study was to describe DE-MRI findings of the LA in the acute and chronic stages postablation. METHODS Twenty-five patients were scanned at two time points postablation. The first group (n = 10) underwent DE-MRI at 24 hours and at 3 months. The second group (n = 16) was scanned at 3 months and at 6 or 9 months. One patient had three scans (24 hours, 3 months, 9 months) and was included in both groups. The location and extent of enhancement were then analyzed between both groups. RESULTS The median change in LA wall injury between 24 hours and 3 months was -6.38% (range -11.7% to 12.58%). The median change in LA wall injury between 3 months and later follow-up was +2.0% (range -4.0% to 6.58%). There appears to be little relationship between the enhancement at 24 hours and 3 months (R(2) = 0.004). In contrast, a strong correlation is seen at 3 months and later follow-up (R(2) = 0.966). Qualitative comparison revealed a stronger qualitative relationship between MRI findings at 3 months and later follow-up than at 24 hours and 3 months. CONCLUSION RF-induced scar appears to have formed by 3 months postablation. At 24 hours postablation, DE-MRI enhancement appears consistent with a transient inflammatory response rather than stable LA scar formation.

Collaboration


Dive into the Nathan Burgon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge