Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan D. Merchant is active.

Publication


Featured researches published by Nathan D. Merchant.


Methods in Ecology and Evolution | 2015

Measuring acoustic habitats

Nathan D. Merchant; Kurt M. Fristrup; Mark Johnson; Peter L. Tyack; Matthew J. Witt; Philippe Blondel; Susan E. Parks

1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.


Marine Pollution Bulletin | 2014

Monitoring ship noise to assess the impact of coastal developments on marine mammals

Nathan D. Merchant; Enrico Pirotta; Tim R. Barton; Paul M. Thompson

The potential impacts of underwater noise on marine mammals are widely recognised, but uncertainty over variability in baseline noise levels often constrains efforts to manage these impacts. This paper characterises natural and anthropogenic contributors to underwater noise at two sites in the Moray Firth Special Area of Conservation, an important marine mammal habitat that may be exposed to increased shipping activity from proposed offshore energy developments. We aimed to establish a pre-development baseline, and to develop ship noise monitoring methods using Automatic Identification System (AIS) and time-lapse video to record trends in noise levels and shipping activity. Our results detail the noise levels currently experienced by a locally protected bottlenose dolphin population, explore the relationship between broadband sound exposure levels and the indicators proposed in response to the EU Marine Strategy Framework Directive, and provide a ship noise assessment toolkit which can be applied in other coastal marine environments.


Marine Pollution Bulletin | 2012

Assessing sound exposure from shipping in coastal waters using a single hydrophone and Automatic Identification System (AIS) data

Nathan D. Merchant; Matthew J. Witt; Philippe Blondel; Brendan J. Godley; George H. Smith

Underwater noise from shipping is a growing presence throughout the worlds oceans, and may be subjecting marine fauna to chronic noise exposure with potentially severe long-term consequences. The coincidence of dense shipping activity and sensitive marine ecosystems in coastal environments is of particular concern, and noise assessment methodologies which describe the high temporal variability of sound exposure in these areas are needed. We present a method of characterising sound exposure from shipping using continuous passive acoustic monitoring combined with Automatic Identification System (AIS) shipping data. The method is applied to data recorded in Falmouth Bay, UK. Absolute and relative levels of intermittent ship noise contributions to the 24-h sound exposure level are determined using an adaptive threshold, and the spatial distribution of potential ship sources is then analysed using AIS data. This technique can be used to prioritize shipping noise mitigation strategies in coastal marine environments.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Short-term disturbance by a commercial two-dimensional seismic survey does not lead to long-term displacement of harbour porpoises

Paul M. Thompson; Kate L. Brookes; Isla M. Graham; Tim R. Barton; Keith Needham; Gareth Bradbury; Nathan D. Merchant

Assessments of the impact of offshore energy developments are constrained because it is not known whether fine-scale behavioural responses to noise lead to broader-scale displacement of protected small cetaceans. We used passive acoustic monitoring and digital aerial surveys to study changes in the occurrence of harbour porpoises across a 2000 km2 study area during a commercial two-dimensional seismic survey in the North Sea. Acoustic and visual data provided evidence of group responses to airgun noise from the 470 cu inch array over ranges of 5–10 km, at received peak-to-peak sound pressure levels of 165–172 dB re 1 µPa and sound exposure levels (SELs) of 145–151 dB re 1 µPa2 s−1. However, animals were typically detected again at affected sites within a few hours, and the level of response declined through the 10 day survey. Overall, acoustic detections decreased significantly during the survey period in the impact area compared with a control area, but this effect was small in relation to natural variation. These results demonstrate that prolonged seismic survey noise did not lead to broader-scale displacement into suboptimal or higher-risk habitats, and suggest that impact assessments should focus on sublethal effects resulting from changes in foraging performance of animals within affected sites.


Journal of the Acoustical Society of America | 2012

Averaging underwater noise levels for environmental assessment of shipping

Nathan D. Merchant; Philippe Blondel; D. Tom Dakin; John Dorocicz

Rising underwater noise levels from shipping have raised concerns regarding chronic impacts to marine fauna. However, there is a lack of consensus over how to average local shipping noise levels for environmental impact assessment. This paper addresses this issue using 110 days of continuous data recorded in the Strait of Georgia, Canada. Probability densities of ~10(7) 1-s samples in selected 1/3 octave bands were approximately stationary across one-month subsamples. Median and mode levels varied with averaging time. Mean sound pressure levels averaged in linear space, though susceptible to strong bias from outliers, are most relevant to cumulative impact assessment metrics.


Journal of the Acoustical Society of America | 2013

Spectral probability density as a tool for ambient noise analysis

Nathan D. Merchant; Tim R. Barton; Paul M. Thompson; Enrico Pirotta; D. Tom Dakin; John Dorocicz

This paper presents the empirical probability density of the power spectral density as a tool to assess the field performance of passive acoustic monitoring systems and the statistical distribution of underwater noise levels across the frequency spectrum. Using example datasets, it is shown that this method can reveal limitations such as persistent tonal components and insufficient dynamic range, which may be undetected by conventional techniques. The method is then combined with spectral averages and percentiles, which illustrates how the underlying noise level distributions influence these metrics. This combined approach is proposed as a standard, integrative presentation of ambient noise spectra.


Methods in Ecology and Evolution | 2016

Particle motion: the missing link in underwater acoustic ecology

Sophie L. Nedelec; James Campbell; Stephen D. Simpson; Nathan D. Merchant

Summary Sound waves in water have both a pressure and a particle-motion component, yet few studies of underwater acoustic ecology have measured the particle-motion component of sound. While mammal hearing is based on detection of sound pressure, fish and invertebrates (i.e. most aquatic animals) primarily sense sound using particle motion. Particle motion can be calculated indirectly from sound pressure measurements under certain conditions, but these conditions are rarely met in the shelf-sea and shallow-water habitats that most aquatic organisms inhabit. Direct measurements of particle motion have been hampered by the availability of instrumentation and a lack of guidance on data analysis methods. Here, we provide an introduction to the topic of underwater particle motion, including the physics and physiology of particle-motion reception. We include a simple computer program for users to determine whether they are working in conditions where measurement of particle motion may be relevant. We discuss instruments that can be used to measure particle motion and the types of analysis appropriate for data collected. A supplemental tutorial and template computer code in matlab will allow users to analyse impulsive, continuous and fluctuating sounds from both pressure and particle-motion recordings. A growing body of research is investigating the role of sound in the functioning of aquatic ecosystems, and the ways in which sound influences animal behaviour, physiology and development. This work has particular urgency for policymakers and environmental managers, who have a responsibility to assess and mitigate the risks posed by rising levels of anthropogenic noise in aquatic ecosystems. As this paper makes clear, because many aquatic animals senses sound using particle motion, this component of the sound field must be addressed if acoustic habitats are to be managed effectively.


Biology Letters | 2016

Evidence for ship noise impacts on humpback whale foraging behaviour

Hannah Blair; Nathan D. Merchant; Ari S. Friedlaender; David N. Wiley; Susan E. Parks

Noise from shipping activity in North Atlantic coastal waters has been steadily increasing and is an area of growing conservation concern, as it has the potential to disrupt the behaviour of marine organisms. This study examines the impacts of ship noise on bottom foraging humpback whales (Megaptera novaeangliae) in the western North Atlantic. Data were collected from 10 foraging whales using non-invasive archival tags that simultaneously recorded underwater movements and the acoustic environment at the whale. Using mixed models, we assess the effects of ship noise on seven parameters of their feeding behaviours. Independent variables included the presence or absence of ship noise and the received level of ship noise at the whale. We found significant effects on foraging, including slower descent rates and fewer side-roll feeding events per dive with increasing ship noise. During 5 of 18 ship passages, dives without side-rolls were observed. These findings indicate that humpback whales on Stellwagen Bank, an area with chronically elevated levels of shipping traffic, significantly change foraging activity when exposed to high levels of ship noise. This measureable reduction in within-dive foraging effort of individual whales could potentially lead to population-level impacts of shipping noise on baleen whale foraging success.


Scientific Reports | 2016

Underwater noise levels in UK waters

Nathan D. Merchant; Kate L. Brookes; Rebecca C. Faulkner; Anthony W. J. Bicknell; Brendan J. Godley; Matthew J. Witt

Underwater noise from human activities appears to be rising, with ramifications for acoustically sensitive marine organisms and the functioning of marine ecosystems. Policymakers are beginning to address the risk of ecological impact, but are constrained by a lack of data on current and historic noise levels. Here, we present the first nationally coordinated effort to quantify underwater noise levels, in support of UK policy objectives under the EU Marine Strategy Framework Directive (MSFD). Field measurements were made during 2013–2014 at twelve sites around the UK. Median noise levels ranged from 81.5–95.5 dB re 1 μPa for one-third octave bands from 63–500 Hz. Noise exposure varied considerably, with little anthropogenic influence at the Celtic Sea site, to several North Sea sites with persistent vessel noise. Comparison of acoustic metrics found that the RMS level (conventionally used to represent the mean) was highly skewed by outliers, exceeding the 97th percentile at some frequencies. We conclude that environmental indicators of anthropogenic noise should instead use percentiles, to ensure statistical robustness. Power analysis indicated that at least three decades of continuous monitoring would be required to detect trends of similar magnitude to historic rises in noise levels observed in the Northeast Pacific.


Advances in Experimental Medicine and Biology | 2016

Soundscape and Noise Exposure Monitoring in a Marine Protected Area Using Shipping Data and Time-Lapse Footage

Nathan D. Merchant; Enrico Pirotta; Tim R. Barton; Paul M. Thompson

We review recent work that developed new techniques for underwater noise assessment that integrate acoustic monitoring with automatic identification system (AIS) shipping data and time-lapse video, meteorological, and tidal data. Two sites were studied within the Moray Firth Special Area of Conservation (SAC) for bottlenose dolphins, where increased shipping traffic is expected from construction of offshore wind farms outside the SAC. Noise exposure varied markedly between the sites, and natural and anthropogenic contributions were characterized using multiple data sources. At one site, AIS-operating vessels accounted for total cumulative sound exposure (0.1-10 kHz), suggesting that noise modeling using the AIS would be feasible.

Collaboration


Dive into the Nathan D. Merchant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge