Nathan D. Roe
College of Health Sciences, Bahrain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan D. Roe.
Free Radical Biology and Medicine | 2012
Subat Turdi; Xuefeng Han; Anna F. Huff; Nathan D. Roe; Nan Hu; Feng Gao; Jun Ren
Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy.
Hypertension | 2014
Xihui Xu; Nathan D. Roe; Mary C.M. Weiser-Evans; Jun Ren
The role of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) in the maintenance of cardiac homeostasis still remains controversial. This study was designed to evaluate the role of cardiomyocyte-specific PTEN in the maintenance of cardiac homeostasis and the underlying mechanisms involved with a focus on autophagy, an evolutionarily conserved pathway for protein degradation. Cardiomyocyte-specific PTEN(flox/flox)/&agr;-myosin heavy chain Cre mice, henceforth referred to as CM-PTENKO, were generated by crossing the floxed PTEN mice with &agr;-myosin heavy chain Cre mice driven by a Cre recombinase promoter. The adult PTEN−/− mice displayed the phenotype of established hypertrophic cardiomyopathy, including unfavorable geometric, functional, and histological changes. Furthermore, cardiomyocyte-specific PTEN knockout mice exhibited increased cardiac mammalian target of rapamycin although suppressed autophagy. Treatment with rapamycin (2 mg/kg per day, IP), an inhibitor of mammalian target of rapamycin, for 1 month effectively reversed the established hypertrophic cardiomyopathy in CM-PTENKO mice. With rapamycin treatment, autophagy activity was significantly restored in the heart of CM-PTENKO mice. Taken together, our results demonstrate an essential role for cardiomyocyte PTEN in maintaining cardiac homeostasis under physiological condition. Cardiomyocyte-specific deletion of PTEN results in the development of hypertrophic cardiomyopathy possibly through a mechanism associated with mammalian target of rapamycin hyperactivation and autophagy suppression.
Biochimica et Biophysica Acta | 2015
Machender R. Kandadi; Evgeniy Panzhinskiy; Nathan D. Roe; Sreejayan Nair; Dahai Hu; Aijun Sun
Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Biochimica et Biophysica Acta | 2015
Nathan D. Roe; Xihui Xu; Machender R. Kandadi; Nan Hu; Jiaojiao Pang; Mary C.M. Weiser-Evans; Jun Ren
Phosphatase and tensin homolog (PTEN) deleted from chromosome 10 has been implicated in the maintenance of cardiac homeostasis although the underlying mechanism(s) remains elusive. We generated a murine model of cardiomyocyte-specific knockout of PTEN to evaluate cardiac geometry and contractile function, as well as the effect of metformin on PTEN deficiency-induced cardiac anomalies, if any. Cardiac histology, autophagy and related signaling molecules were evaluated. Cardiomyocyte-specific PTEN deletion elicited cardiac hypertrophy and contractile anomalies (echocardiographic and cardiomyocyte contractile dysfunction) associated with compromised intracellular Ca(2+) handling. PTEN deletion-induced cardiac hypertrophy and contractile anomalies were associated with dampened phosphorylation of PTEN-inducible kinase 1 (Pink1) and AMPK. Interestingly, administration of AMPK activator metformin (200mg/kg/d, in drinking H2O for 4weeks) rescued against PTEN deletion-induced geometric and functional defects as well as interrupted autophagy and autophagic flux in the heart. Moreover, metformin administration partially although significantly attenuated PTEN deletion-induced accumulation of superoxide. RNA interference against Pink1 in H9C2 myoblasts overtly increased intracellular ATP levels and suppressed AMPK phosphorylation, confirming the role of AMPK as a downstream target for PTEN-Pink1. Further scrutiny revealed that activation of AMPK and autophagy using metformin and rapamycin, respectively, rescued against PTEN deletion-induced mechanical anomalies with little additive effect. These data demonstrated that cardiomyocyte-specific deletion of PTEN leads to the loss of Pink1-AMPK signaling, development of cardiac hypertrophy and contractile defect. Activation of AMPK rescued against PTEN deletion-induced cardiac anomalies associated with restoration of autophagy and autophagic flux. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Toxicology Letters | 2009
Subat Turdi; Robbie Schamber; Nathan D. Roe; Herbert G Chew; Bruce Culver; Jun Ren
Methamphetamine, a commonly seen substance of abuse, has been reported to exert detrimental effect on bodily function including the cardiovascular system although its mechanism of action is poorly understood. This study was designed to examine the direct impact of methamphetamine on isolated whole heart and single cardiomyocyte contractile function. Murine hearts and isolated cardiomyocytes from adult FVB mice were exposed to various concentrations of methamphetamine for 30min prior to the assessment of mechanical function using a Langendroff apparatus and an IonOptix Myocam system, respectively. Cardiac contractile properties analyzed included maximal velocity of left ventricular pressure development and decline (+/-dP/dt), peak shortening amplitude (PS), maximal velocity of shortening/relengthening (+/-dLdt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), resting and electrically stimulated increase of intracellular Ca(2+) as well as intracellular Ca(2+) decay. Our results revealed that acute methamphetamine exposure depressed +/-dP/dt, PS and rise of intracellular Ca(2+) without affecting +/-dLdt, TPS, TR(90), resting intracellular Ca(2+) and intracellular Ca(2+) decay. Furthermore, methamphetamine nullified the adrenergic agonist norepinephrine-elicited positive cardiomyocyte contractile response, including elevated PS, +/-dLdt and shortened TR(90) without affecting TPS. Western blot analysis showed unchanged expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban, associated with upregulated Na(+)-Ca(2+) exchanger levels following acute methamphetamine exposure. In addition, methamphetamine promoted overt cardiomyocyte protein damage evaluated by carbonyl formation. Taken together, these results demonstrate direct cardiac depressant effect of methamphetamine in myocardium and isolated cardiomyocytes, possibly associated with protein damage and dampened adrenergic response.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Nathan D. Roe; Jun Ren
Endoplasmic reticulum (ER) stress elicits oxidative stress and intracellular Ca(2+) derangement via activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This study was designed to examine the role of CaMKII in ER stress-induced cardiac dysfunction and apoptosis as well as the effect of antioxidant catalase. Wild-type FVB and transgenic mice with cardiac-specific overexpression of catalase were challenged with the ER stress inducer tunicamycin (3 mg/kg ip for 48 h). Presence of ER stress was verified using the ER stress protein markers immunoglobulin binding protein (BiP) and C/EBP homologous protein (CHOP), the effect of which was unaffected by catalase overexpression. Echocardiographic assessment revealed that tunicamycin elicited cardiac remodeling (enlarged end-systolic diameter without affecting diastolic and ventricular wall thickness), depressed fractional shortening, ejection fraction, and cardiomyocyte contractile capacity, intracellular Ca(2+) mishandling, accumulation of reactive oxygen species (superoxide production and NADPH oxidase p47phox level), CaMKII oxidation, and apoptosis (evidenced by Bax, Bcl-2/Bax ratio, and TUNEL staining), the effects of which were obliterated by catalase. Interestingly, tunicamycin-induced cardiomyocyte mechanical anomalies and cell death were ablated by the CaMKII inhibitor KN93, in a manner reminiscent of catalase. These data favored a permissive role of oxidative stress and CaMKII activation in ER stress-induced cardiac dysfunction and cell death. Our data further revealed the therapeutic potential of antioxidant or CaMKII inhibition in cardiac pathological conditions associated with ER stress. This research shows for the first time that contractile dysfunction caused by ER stress is a result of the oxidative activation of the CaMKII pathway.
Current Pharmaceutical Design | 2014
Machender R. Kandadi; Nathan D. Roe; Jun Ren
Leptin hormone plays a vital role in the pathophysiological changes in heart geometry and function. Nonetheless, the precise mechanism(s) triggering leptin-induced cardiomyocyte contractile dysfunction is not well understood. The present study was designed to examine if autophagy plays a role in leptin-induced cardiac contractile anomalies. Cardiomyocyte contractile function was evaluated using an IonOptix edge detection system in cardiomyocytes following treatment with leptin in the presence or absence of the autophagy inhibiting chemical 3-methyladenine (3-MA). Immunoblotting was employed to evaluate expression of AMPK, Beclin1, Atg 5, p62 and LC3-II. GFP-LC3 puncta was used to assess autophagosome formation. Leptin suppressed cardiac contractile function as evidenced by decreased peak shortening, maximal velocity of shortening and relengthening, increased time-to-90% relengthening, all the observed effects were reduced or obliterated by autophagy inhibition. Leptin promoted superoxide generation, AMPK activation and overt autophagy induction. Leptin promoted autophagy as evidenced by enhanced LC3-II, Beclin, Atg 5 and decreased p62 levels. Pharmacological inhibition of reactive oxygen species (ROS) using tempol significantly attenuated leptin-induced autophagosome formation and cardiac contractile anomalies. In addition, genetic deletion of AMPKα2 or pharmacological inhibition of AMPK using compound C abrogated leptin or superoxide induced cardiac contractile dysfunction and autophagosome formation. In summary, our data revealed that leptin impairs cardiac contractile function through a superoxide generation-AMPK activation-and autophagy dependent mechanism.
Toxicology Letters | 2011
Nathan D. Roe; Jun Ren
Increased levels of inducible nitric oxide synthase (iNOS) during cardiac stress such as ischemia-reperfusion, sepsis and hypertension may display both beneficial and detrimental roles in cardiac contractile performance. However, the precise role of iNOS in the maintenance of cardiac contractile function remains elusive. This study was designed to determine the impact of chronic iNOS inhibition on cardiac contractile function and the underlying mechanism involved with a special focus on the NO downstream signaling molecule Akt. Male C57 or Akt2 knockout [Akt2(-/-)] mice were injected with the specific iNOS inhibitor 1400W (2 mg/kg/d) or saline for 7 days. Both 1400W and Akt2 knockout dampened glucose and insulin tolerance without additive effects. Treatment of 1400W decreased heart and liver weights as well as cardiomyocyte cross-sectional area in C57 but not Akt2 knockout mice. 1400W but not Akt2 knockout compromised cardiomyocyte mechanical properties including decreased peak shortening and maximal velocity of shortening/relengthening, prolonged relengthening duration, reduced intracellular Ca(2+) release and decay rate, the effects of which were ablated or attenuated by Akt2 knockout. Akt2 knockout but not 1400W increased the levels of intracellular Ca(2+) regulatory proteins including SERCA2a and phospholamban phosphorylation. 1400W reduced the level of anti-apoptotic protein Bcl-2, the effect of which was unaffected by Akt2 knockout. Neither 1400W nor Akt2 knockout significantly affected ER stress, autophagy, the post-insulin receptor signaling Akt, GSK3β and AMPK, as well as the stress signaling IκB, JNK, ERK and p38 with the exception of elevated IκB phosphorylation with jointed effect of 1400W and Akt2 knockout. Taken together, these data indicated that an essential role of iNOS in the maintenance of cardiac morphology and function possibly through an Akt2-dependent mechanism.
Vascular Pharmacology | 2012
Nathan D. Roe; Jun Ren
Toxicology Letters | 2016
Nathan D. Roe; Jun Ren