Nathan D. Schley
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan D. Schley.
Journal of the American Chemical Society | 2010
James D. Blakemore; Nathan D. Schley; David Balcells; Jonathan F. Hull; Gerard Olack; Christopher D. Incarvito; Odile Eisenstein; Gary W. Brudvig; Robert H. Crabtree
Iridium half-sandwich complexes of the types Cp*Ir(N-C)X, [Cp*Ir(N-N)X]X, and [CpIr(N-N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H(2)O)(3)]SO(4) and [(Cp*Ir)(2)(μ-OH)(3)]OH can show even higher turnover frequencies (up to 20 min(-1) at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H(2)(18)O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distinguish the active homogeneous catalyst from heterogeneous nanoparticulate iridium dioxide.
Journal of the American Chemical Society | 2011
Nathan D. Schley; James D. Blakemore; Navaneetha K. Subbaiyan; Christopher D. Incarvito; Francis D'Souza; Robert H. Crabtree; Gary W. Brudvig
Molecular water-oxidation catalysts can deactivate by side reactions or decompose to secondary materials over time due to the harsh, oxidizing conditions required to drive oxygen evolution. Distinguishing electrode surface-bound heterogeneous catalysts (such as iridium oxide) from homogeneous molecular catalysts is often difficult. Using an electrochemical quartz crystal nanobalance (EQCN), we report a method for probing electrodeposition of metal oxide materials from molecular precursors. Using the previously reported [Cp*Ir(H(2)O)(3)](2+) complex, we monitor deposition of a heterogeneous water oxidation catalyst by measuring the electrode mass in real time with piezoelectric gravimetry. Conversely, we do not observe deposition for homogeneous catalysts, such as the water-soluble complex Cp*Ir(pyr-CMe(2)O)X reported in this work. Rotating ring-disk electrode electrochemistry and Clark-type electrode studies show that this complex is a catalyst for water oxidation with oxygen produced as the product. For the heterogeneous, surface-attached material generated from [Cp*Ir(H(2)O)(3)](2+), we can estimate the percentage of electroactive metal centers in the surface layer. We monitor electrode composition dynamically during catalytic turnover, providing new information on catalytic performance. Together, these data suggest that EQCN can directly probe the homogeneity of molecular water-oxidation catalysts over short times.
Journal of the American Chemical Society | 2011
Graham E. Dobereiner; Ainara Nova; Nathan D. Schley; Nilay Hazari; Scott J. Miller; Odile Eisenstein; Robert H. Crabtree
A new homogeneous iridium catalyst gives hydrogenation of quinolines under unprecedentedly mild conditions-as low as 1 atm of H(2) and 25 °C. We report air- and moisture-stable iridium(I) NHC catalyst precursors that are active for reduction of a wide variety of quinolines having functionalities at the 2-, 6-, and 8- positions. A combined experimental and theoretical study has elucidated the mechanism of this reaction. DFT studies on a model Ir complex show that a conventional inner-sphere mechanism is disfavored relative to an unusual stepwise outer-sphere mechanism involving sequential proton and hydride transfer. All intermediates in this proposed mechanism have been isolated or spectroscopically characterized, including two new iridium(III) hydrides and a notable cationic iridium(III) dihydrogen dihydride complex. DFT calculations on full systems establish the coordination geometry of these iridium hydrides, while stoichiometric and catalytic experiments with the isolated complexes provide evidence for the mechanistic proposal. The proposed mechanism explains why the catalytic reaction is slower for unhindered substrates and why small changes in the ligand set drastically alter catalyst activity.
Chemical Science | 2011
James D. Blakemore; Nathan D. Schley; Gerard Olack; Christopher D. Incarvito; Gary W. Brudvig; Robert H. Crabtree
Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts.
Journal of the American Chemical Society | 2014
Nathan D. Schley; Gregory C. Fu
Although nickel-catalyzed stereoconvergent couplings of racemic alkyl electrophiles are emerging as a powerful tool in organic chemistry, to date there have been no systematic mechanistic studies of such processes. Herein, we examine the pathway for enantioselective Negishi arylations of secondary propargylic bromides, and we provide evidence for an unanticipated radical chain pathway wherein oxidative addition of the C–Br bond occurs through a bimetallic mechanism. In particular, we have crystallographically characterized a diamagnetic arylnickel(II) complex, [(i-Pr-pybox)NiIIPh]BArF4, and furnished support for [(i-Pr-pybox)NiIIPh]+ being the predominant nickel-containing species formed under the catalyzed conditions as well as a key player in the cross-coupling mechanism. On the other hand, our observations do not require a role for an organonickel(I) intermediate (e.g., (i-Pr-pybox)NiIPh), which has previously been suggested to be an intermediate in nickel-catalyzed cross-couplings, oxidatively adding alkyl electrophiles through a monometallic pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Michael T. Vagnini; Amanda L. Smeigh; James D. Blakemore; Samuel W. Eaton; Nathan D. Schley; Francis D'Souza; Robert H. Crabtree; Gary W. Brudvig; Dick T. Co; Michael R. Wasielewski
Photodriving the activity of water-oxidation catalysts is a critical step toward generating fuel from sunlight. The design of a system with optimal energetics and kinetics requires a mechanistic understanding of the single-electron transfer events in catalyst activation. To this end, we report here the synthesis and photophysical characterization of two covalently bound chromophore-catalyst electron transfer dyads, in which the dyes are derivatives of the strong photooxidant perylene-3,4:9,10-bis(dicarboximide) (PDI) and the molecular catalyst is the Cp∗Ir(ppy)Cl metal complex, where ppy = 2-phenylpyridine. Photoexcitation of the PDI in each dyad results in reduction of the chromophore to PDI•- in less than 10 ps, a process that outcompetes any generation of 3∗PDI by spin-orbit-induced intersystem crossing. Biexponential charge recombination largely to the PDI-Ir(III) ground state is suggestive of multiple populations of the PDI•--Ir(IV) ion-pair, whose relative abundance varies with solvent polarity. Electrochemical studies of the dyads show strong irreversible oxidation current similar to that seen for model catalysts, indicating that the catalytic integrity of the metal complex is maintained upon attachment to the high molecular weight photosensitizer.
Journal of the American Chemical Society | 2010
Meng Zhou; Nathan D. Schley; Robert H. Crabtree
A series of Cp*Ir complexes can catalyze C-H oxidation, with ceric ammonium nitrate as the terminal oxidant and water as the source of oxygen. Remarkably the hydroxylation of cis-decalin and 1,4-dimethylcyclohexane proceeds with retention of stereochemistry. With H(2)O(18), cis-decalin oxidation gave (18)O incorporation into the product cis-decalol.
Inorganic Chemistry | 2012
James D. Blakemore; Nathan D. Schley; Maxwell N. Kushner-Lenhoff; Andrew M. Winter; Francis D’Souza; Robert H. Crabtree; Gary W. Brudvig
Electrodeposition of iridium oxide layers from soluble precursors provides a route to active thin-layer electrocatalysts for use on water-oxidizing anodes. Certain organometallic half-sandwich aqua complexes of iridium form stable and highly active oxide films upon electrochemical oxidation in aqueous solution. The catalyst films appear as blue layers on the anode when sufficiently thick, and most closely resemble hydrous iridium(III,IV) oxide by voltammetry. The deposition rate and cyclic voltammetric response of the electrodeposited material depend on whether the precursor complex contains a pentamethylcyclopentadieneyl (Cp*) or cyclopentadienyl ligand (Cp), and do not match, in either case, iridium oxide anodes prepared from non-organometallic precursors. Here, we survey our organometallic precursors, iridium hydroxide, and pre-formed iridium oxide nanoparticles. From electrochemical quartz crystal nanobalance (EQCN) studies, we find differences in the rate of electrodeposition of catalyst layers from the two half-sandwich precursors; however, the resulting layers operate as water-oxidizing anodes with indistinguishable overpotentials and H/D isotope effects. Furthermore, using the mass data collected by EQCN and not otherwise available, we show that the electrodeposited materials are excellent catalysts for the water-oxidation reaction, showing maximum turnover frequencies greater than 0.5 mol O(2) (mol iridium)(-1) s(-1) and quantitative conversion of current to product dioxygen. Importantly, these anodes maintain their high activity and robustness at very low iridium loadings. Our organometallic precursors contrast with pre-formed iridium oxide nanoparticles, which form an unstable electrodeposited material that is not stably adherent to the anode surface at even moderately oxidizing potentials.
Inorganic Chemistry | 2013
James D. Blakemore; Michael W. Mara; Maxwell N. Kushner-Lenhoff; Nathan D. Schley; Steven J. Konezny; Ivan Rivalta; Christian F. A. Negre; Robert C. Snoeberger; Oleksandr Kokhan; Jier Huang; Andrew B. Stickrath; Lan Anh Tran; Maria L. Parr; Lin X. Chen; David M. Tiede; Victor S. Batista; Robert H. Crabtree; Gary W. Brudvig
Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidation catalysis than crystalline IrO(2) and functions as a remarkably robust catalyst, capable of catalyzing water oxidation without deactivation or significant corrosion for at least 70 h. Elemental analysis reveals that BL contains carbon that is derived from the Cp* ligand (∼ 3% by mass after prolonged electrolysis). Because the electrodeposition of precursors 1 or 2 gives a highly active catalyst material, and electrochemical oxidation of other iridium complexes seems not to result in immediate conversion to iridium oxide materials, we investigate here the nature of the deposited material. The steps leading to the formation of BL and its structure have been investigated by a combination of spectroscopic and theoretical methods. IR spectroscopy shows that the carbon content of BL, while containing some C-H bonds intact at short times, is composed primarily of components with C═O fragments at longer times. X-ray absorption and X-ray absorption fine structure show that, on average, the six ligands to iridium in BL are likely oxygen atoms, consistent with formation of iridium oxide under the oxidizing conditions. High-energy X-ray scattering (HEXS) and pair distribution function (PDF) analysis (obtained ex situ on powder samples) show that BL is largely free of the molecular precursors and is composed of small, <7 Å, iridium oxide domains. Density functional theory (DFT) modeling of the X-ray data suggests a limited set of final components in BL; ketomalonate has been chosen as a model fragment because it gives a good fit to the HEXS-PDF data and is a potential decomposition product of Cp*.
Inorganic Chemistry | 2018
Timothy P. Brewster; Tan H. Nguyen; Zhongjing Li; William T. Eckenhoff; Nathan D. Schley; Nathan J. DeYonker
We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.