Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan E. Schoppa is active.

Publication


Featured researches published by Nathan E. Schoppa.


The Journal of Neuroscience | 1998

Dendrodendritic Inhibition in the Olfactory Bulb Is Driven by NMDA Receptors

Nathan E. Schoppa; J. Mark Kinzie; Yoshinori Sahara; Thomas P. Segerson; Gary L. Westbrook

At many central excitatory synapses, AMPA receptors relay the electrical signal, whereas activation of NMDA receptors is conditional and serves a modulatory function. We show here quite a different role for NMDA receptors at dendrodendritic synapses between mitral and granule cells in the rat olfactory bulb. In whole-cell patch-clamp recordings in bulb slices, stimulation of mitral cells elicited slowly decaying, GABAA receptor-mediated reciprocal IPSCs that reflected prolonged GABA release from granule cells. Although granule cells had a normal complement of AMPA and NMDA receptors, the IPSC was completely blocked by the NMDA receptor antagonistd,l-AP-5, suggesting that NMDA receptor activation is an absolute requirement for dendrodendritic inhibition. The AMPA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide (NBQX) had no effect on IPSCs in the absence of extracellular magnesium but modestly reduced IPSCs in 1 mm magnesium, indicating that the primary effect of the AMPA receptor-mediated depolarization was to facilitate the unblocking of NMDA receptors. Granule cell voltage recordings indicated that effective spike stimulation in granule cells depended on the slow NMDA receptor kinetics. Granule cells also showed a pronounced delay between synaptic stimulation and action potential generation, suggesting that their intrinsic membrane properties underlie the ineffectiveness of brief AMPA receptor-mediated EPSPs. NMDA receptors also seem to have a central role in dendrodendritic inhibition in vivo, because intraperitoneal dizocilpine maleate (MK-801) injection in young adult rats resulted in disinhibition of mitral cells as measured by the generation of c-fos mRNA. The unique dependence of dendrodendritic inhibition on slow EPSPs generated by NMDA receptors suggests that olfactory information processing depends on long-lasting reciprocal and lateral inhibition.


Neuron | 2001

Glomerulus-Specific Synchronization of Mitral Cells in the Olfactory Bulb

Nathan E. Schoppa; Gary L. Westbrook

Odor elicits a well-organized pattern of glomerular activation in the olfactory bulb. However, the mechanisms by which this spatial map is transformed into an odor code remain unclear. We examined this question in rat olfactory bulb slices in recordings from output mitral cells. Electrical stimulation of incoming afferents elicited slow ( approximately 2 Hz) oscillations that originated in glomeruli and were highly synchronized for mitral cells projecting to the same glomerulus. Cyclical depolarizations were generated by glutamate activation of dendritic autoreceptors, while the slow frequency was determined primarily by the duration of regenerative glutamate release. Patterned stimuli elicited stimulus-entrained oscillations that amplified weak and variable inputs. We suggest that these oscillations maintain the fidelity of the spatial map by ensuring that all mitral cells within a glomerulus-specific network respond to odor as a functional unit.


Nature Neuroscience | 1999

Regulation of synaptic timing in the olfactory bulb by an A-type potassium current.

Nathan E. Schoppa; Gary L. Westbrook

Although rapid synaptic transmission confers signal fidelity, the activity of some neuronal circuits depends on prolonged excitation or inhibition. Here we demonstrate that GABAergic granule cells in the rat olfactory bulb produce prolonged inhibition of mitral cells through a precise kinetic matching between transmitter-gated and voltage-gated channels in their dendritic membrane. A transient A-type potassium current (IA) specifically attenuated dendrodendritic inputs mediated by fast-acting AMPA receptors such that the excitation and subsequent inhibitory output of granule cells followed the prolonged kinetics of their NMDA receptors. Altering the weights of the AMPA and NMDA receptor-mediated inputs by modulating IA provides a mechanism to regulate the timing of inhibition according to the demands on the bulb network.


Trends in Neurosciences | 2003

Dendritic processing within olfactory bulb circuits

Nathan E. Schoppa; Nathan N Urban

Odors elicit a well-organized pattern of activation in glomeruli across the surface of the olfactory bulb. However, the mechanisms by which this map is transformed into an odor code by the bulb circuitry remain unclear. Recent physiological studies in bulb slices have identified several synaptic processes that could be involved in sharpening odorant signals. Mitral cells within a single odorant receptor-specific network can be synchronized by dendrodendritic excitatory interactions in a glomerulus, whereas mitral cells in different networks engage in long-lasting lateral inhibition mediated by dendrodendritic synapses with interneurons. The emerging picture is one in which groups of mitral cells use a unique set of mechanisms to accomplish computational functions similar to those performed by analogous modular structures in other sensory systems.


Nature Neuroscience | 2002

AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli

Nathan E. Schoppa; Gary L. Westbrook

Information processing in the brain may rely on temporal correlations in spike activity between neurons. Within the olfactory bulb, correlated spiking in output mitral cells could affect the odor code by either binding or amplifying signals from individual odorant receptors. We examined the timing of spike trains in mitral cells of rat olfactory bulb slices. Depolarization of mitral cell pairs elicited spikes that were correlated on a rapid timescale (≤10 ms) for cells whose primary dendrites projected to the same glomerulus. Correlated spiking was driven by a novel mechanism that depended on electrical coupling at mitral cell primary dendrites; the specific synchronizing signal was a coupled depolarization (∼20 ms) that was mediated by dendritic AMPA autoreceptors. We suggest that glomerulus-specific correlated spiking in mitral cells helps to preserve the fidelity of odor signals that are delivered to the olfactory cortex.


The Journal of Neuroscience | 2009

Control of On/Off Glomerular Signaling by a Local GABAergic Microcircuit in the Olfactory Bulb

David H. Gire; Nathan E. Schoppa

Odors are coded at the input level of the olfactory bulb by a spatial map of activated glomeruli, reflecting different odorant receptors (ORs) stimulated in the nose. Here we examined the function of local synaptic processing within glomeruli in transforming these input patterns into an output for the bulb, using patch-clamp recordings and calcium imaging in rat bulb slices. Two types of transformations were observed at glomeruli, the first of which produced a bimodal, “on/off” glomerular signal that varied probabilistically depending on olfactory receptor neuron (ORN) input levels. The bimodal response behavior was seen in glomerular synaptic responses, as well as in action potential (“spike”) firing, wherein all mitral cells affiliated with a glomerulus either engaged in prolonged spike bursts or did not spike at all. In addition, evidence was obtained that GABAergic periglomerular (PG) cells that surround a glomerulus can prevent activation of a glomerulus through inhibitory inputs targeted onto excitatory external tufted cells. The path of PG cell activation appeared to be confined to one glomerulus, such that ORNs at one glomerulus initiated inhibition of the same glomerulus. The observed glomerular “self-inhibition” provides a mechanism of filtering odor signals that would be an alternative to commonly proposed mechanisms of lateral inhibition between OR-specific glomeruli. In this case, selective suppression of weak odor signals could be achieved based on the difference in the input resistance of PG cells versus excitatory neurons at a glomerulus.


The Journal of Neuroscience | 2012

Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path

David H. Gire; Kevin M. Franks; Joseph D. Zak; Kenji F. Tanaka; Jennifer D. Whitesell; Abigail A. Mulligan; René Hen; Nathan E. Schoppa

Within the olfactory system, information flow from the periphery onto output mitral cells (MCs) of the olfactory bulb (OB) has been thought to be mediated by direct synaptic inputs from olfactory sensory neurons (OSNs). Here, we performed patch-clamp measurements in rat and mouse OB slices to investigate mechanisms of OSN signaling onto MCs, including the assumption of a direct path, using electrical and optogenetic stimulation methods that selectively activated OSNs. We found that MCs are in fact not typically activated by direct OSN inputs and instead require a multistep, diffuse mechanism involving another glutamatergic cell type, the tufted cells. The preference for a multistep mechanism reflects the fact that signals arising from direct OSN inputs are drastically shunted by connexin 36-mediated gap junctions on MCs, but not tufted cells. An OB circuit with tufted cells intermediate between OSNs and MCs suggests that considerable processing of olfactory information occurs before its reaching MCs.


The Journal of Neuroscience | 2008

GABAergic Circuits Control Input–Spike Coupling in the Piriform Cortex

Victor M. Luna; Nathan E. Schoppa

Odor coding in mammals is widely believed to involve synchronized gamma frequency (30–70 Hz) oscillations in the first processing structure, the olfactory bulb. How such inputs are read in downstream cortical structures however is not known. Here we used patch-clamp recordings in rat piriform cortex slices to examine cellular mechanisms that shape how the cortex integrates inputs from bulb mitral cells. Electrical stimulation of mitral cell axons in the lateral olfactory tract (LOT) resulted in excitation of pyramidal cells (PCs), which was followed ∼10 ms later by inhibition that was highly reproducible between trials in its onset time. This inhibition was somatic in origin and appeared to be driven through a feedforward mechanism, wherein GABAergic interneurons were directly excited by mitral cell axons. The precise inhibition affected action potential firing in PCs in two distinct ways. First, by abruptly terminating PC excitation, it limited the PC response to each EPSP to exactly one, precisely timed action potential. In addition, inhibition limited the summation of EPSPs across time, such that PCs fired action potentials in strong preference for synchronized inputs arriving in a time window of <5 ms. Both mechanisms would help ensure that PCs respond faithfully and selectively to mitral cell inputs arriving as a synchronized gamma frequency pattern.


Journal of Neurophysiology | 2008

Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb.

David H. Gire; Nathan E. Schoppa

The noradrenergic system is widely thought to be important for associative learning in the olfactory system through actions in the first processing structure, the main olfactory bulb (MOB). Here, we used extracellular local field potential (LFP) and patch-clamp recordings in rat MOB slices to examine norepinephrine (NE)-induced long-term changes in circuit properties that might underlie learning. During responses to patterned olfactory nerve stimulation mimicking the breathing cycle, NE induced a long-term increase in gamma frequency (30-70 Hz) synchronized oscillations. The enhancement persisted long after washout of NE (<or=70 min), depended on the combined actions of NE and neuronal stimulation, and seemed to be caused by enhanced excitatory drive on the mitral/granule cell network that underlies rapid gamma oscillations. The last effect, increased excitation, was manifested as an increase in evoked long-lasting depolarizations (LLDs) in mitral cells. From a functional perspective, the observed long-term cellular and network changes could promote associative learning by amplifying odor-specific signals.


The Journal of Neuroscience | 2006

AMPA/Kainate Receptors Drive Rapid Output and Precise Synchrony in Olfactory Bulb Granule Cells

Nathan E. Schoppa

Gamma frequency (30–70 Hz) synchronized oscillatory activity in the olfactory bulb is widely believed to be important for odor detection and discrimination. As in other circuits with “gamma activity,” the activity in the bulb is driven by GABAergic interneurons, specifically a class of axonless cells called granule cells. However, bulb granule cells appear to lack some key mechanistic features that promote rapid synchrony in other circuits, including direct electrical interconnections and dominant actions for fast neurotransmitter receptors. At least under “static” stimulus conditions, granule cells are driven by kinetically slow NMDA receptors. Here, I used patch-clamp recordings in rat olfactory bulb slices to better understand mechanisms that shape granule cell activity under “dynamic” stimulus conditions that mimic a natural odor stimulus. During a 4 Hz patterned stimulation of olfactory nerve afferents, activation of single granule cells was primarily controlled by two classes of AMPA/kainate receptor-mediated synaptic inputs derived from output mitral cells. The rapid kinetics of these receptors, together with inactivation of A-type potassium channels, ensured that granule cells had short spike-response times. Studies in cell pairs, moreover, indicated that excitatory inputs could synchronize granule cells on a rapid time scale (2–5 ms), in turn resulting in phase-locked GABA release onto mitral cells. The precision of granule cell synchrony was controlled by the same biophysical mechanisms that promoted rapid single-cell spiking. These studies demonstrate the mechanistic underpinnings that transform a circuit with slow, uncoupled activity under static conditions into a fast, dynamic circuit operating with high precision under physiological conditions.

Collaboration


Dive into the Nathan E. Schoppa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer D. Whitesell

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sruthi Pandipati

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer N. Bourne

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Lawrence Hunter

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Thomas S. McTavish

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge