Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan Grove is active.

Publication


Featured researches published by Nathan Grove.


Molecular Therapy | 2009

Efficient, long-term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates.

Nicola Brunetti-Pierri; Gary Stapleton; Mark A. Law; John P. Breinholt; Donna Palmer; Yu Zuo; Nathan Grove; Milton J. Finegold; Karen Rice; Arthur L. Beaudet; Charles E. Mullins; Philip Ng

Helper-dependent adenoviral vectors (HDAd) are devoid of all viral coding sequences and are thus an improvement over early generation Ad because they can provide long-term transgene expression in vivo without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic intravenous injection, and this unfortunately results in dose-dependent acute toxicity. To overcome this important obstacle, we have developed a minimally invasive method to preferentially deliver HDAd into the liver of nonhuman primates. Briefly, a balloon occlusion catheter was percutaneously positioned in the inferior vena cava to occlude hepatic venous outflow. HDAd was injected directly into the occluded liver via a percutaneously placed hepatic artery catheter. Compared to systemic vector injection, this approach resulted in substantially higher hepatic transduction efficiency using clinically relevant low vector doses and was accompanied by mild-to-moderate acute but transient toxicities. Transgene expression was sustained for up to 964 days. These results suggest that our minimally invasive method of delivery can significantly improve the vectors therapeutic index and may be a first step toward clinical application of HDAd for liver-directed gene therapy.


Molecular Therapy | 2011

Generation of a Kupffer Cell-evading Adenovirus for Systemic and Liver-directed Gene Transfer

Reeti Khare; Shannon M. May; Francesco Vetrini; Eric A. Weaver; Donna Palmer; Amanda Rosewell; Nathan Grove; Philip Ng; Michael A. Barry

As much as 90% of an intravenously (i.v.) injected dose of adenovirus serotype 5 (Ad5) is absorbed and destroyed by liver Kupffer cells. Viruses that escape these cells can then transduce hepatocytes after binding factor X (FX). Given that interactions with FX and Kupffer cells are thought to occur on the Ad5 hexon protein, we replaced its exposed hypervariable regions (HVR) with those from Ad6. When tested in vivo in BALB/c mice and in hamsters, the Ad5/6 chimera mediated >10 times higher transduction in the liver. This effect was not due to changes in FX binding. Rather, Ad5/6 appeared to escape Kupffer cell uptake as evidenced by producing no Kupffer cell death in vivo, not requiring predosing in vivo, and being phagocytosed less efficiently by macrophages in vitro compared to Ad5. When tested as a helper-dependent adenovirus (Ad) vector, Ad5/6 mediated higher luciferase and factor IX transgene expression than either helper-dependent adenoviral 5 (HD-Ad5) or HD-Ad6 vectors. These data suggest that the Ad5/6 hexon-chimera evades Kupffer cells and may have utility for systemic and liver-directed therapies.


Human Gene Therapy | 2013

Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors

Nicola Brunetti-Pierri; Thomas Ng; David A. Iannitti; William G. Cioffi; Gary Stapleton; Mark A. Law; John P. Breinholt; Donna Palmer; Nathan Grove; Karen Rice; Cassondra Bauer; Milton J. Finegold; Arthur L. Beaudet; Charles E. Mullins; Philip Ng

Helper-dependent adenoviral vectors (HDAd) have been shown to mediate a considerably longer duration of transgene expression than first-generation adenoviral vectors. We have previously shown that transgene expression from HDAd-transduced hepatocytes can persist at high levels for up to 2.6 years in nonhuman primates following a single-vector administration. Because duration of transgene expression and long-term toxicity are critical for risk:benefit assessment, we have continued to monitor these animals. We report here that transgene expression has persisted for the entire observation period of up to 7 years for all animals without long-term adverse effects. However, in all cases, transgene expression level slowly declined over time to less than 10% of peak values by the end of the observation period but remained 2.3-111-fold above baseline values. These results will provide important information for a more informed risk:benefit assessment before clinical application of HDAd.


Molecular Therapy | 2013

SR-A and SREC-I Are Kupffer and Endothelial Cell Receptors for Helper-dependent Adenoviral Vectors

Pasquale Piccolo; Francesco Vetrini; Pratibha Mithbaokar; Nathan Grove; Terry Bertin; Donna Palmer; Philip Ng; Nicola Brunetti-Pierri

Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes with no chronic toxicity. However, a toxic acute response with potentially lethal consequences has hindered their clinical applications. Liver sinusoidal endothelial cells (LSECs) and Kupffer cells are major barriers to efficient hepatocyte transduction. Understanding the mechanisms of adenoviral vector uptake by non-parenchymal cells may allow the development of strategies aimed at overcoming these important barriers and to achieve preferential hepatocyte gene transfer with reduced toxicity. Scavenger receptors on Kupffer cells bind adenoviral particles and remove them from the circulation, thus preventing hepatocyte transduction. In the present study, we show that HDAd particles interact in vitro and in vivo with scavenger receptor-A (SR-A) and with scavenger receptor expressed on endothelial cells-I (SREC-I) and we exploited this knowledge to increase the efficiency of hepatocyte transduction by HDAd vectors in vivo through blocking of SR-A and SREC-I with specific fragments antigen-binding (Fabs).


Molecular Therapy | 2012

Balloon catheter delivery of helper-dependent adenoviral vector results in sustained, therapeutic hFIX expression in rhesus macaques.

Nicola Brunetti-Pierri; Aimee Liou; Priti Patel; Donna Palmer; Nathan Grove; Milton J. Finegold; Pasquale Piccolo; Elizabeth Donnachie; Karen Rice; Arthur L. Beaudet; Charles E. Mullins; Philip Ng

Hemophilia B is an excellent candidate for gene therapy because low levels of factor IX (FIX) (≥1%) result in clinically significant improvement of the bleeding diathesis. Helper-dependent adenoviral (HDAd) vectors can mediate long-term transgene expression without chronic toxicity. To determine the potential for HDAd-mediated liver-directed hemophilia B gene therapy, we administered an HDAd expressing hFIX into rhesus macaques through a novel and minimally invasive balloon occlusion catheter-based method that permits preferential, high-efficiency hepatocyte transduction with low, subtoxic vector doses. Animals given 1 × 10(12) and 1 × 10(11) virus particle (vp)/kg achieved therapeutic hFIX levels for the entire observation period (up to 1,029 days). At 3 × 10(10) and 1 × 10(10) vp/kg, only subtherapeutic hFIX levels were achieved which were not sustained long-term. Balloon occlusion administration of HDAd was well tolerated with negligible toxicity. Five of six animals developed inhibitors to hFIX. These results provide important information in assessing the clinical utility of HDAd for hemophilia B gene therapy.


Human Gene Therapy | 2009

Bioengineered Factor IX Molecules with Increased Catalytic Activity Improve the Therapeutic Index of Gene Therapy Vectors for Hemophilia B

Nicola Brunetti-Pierri; Nathan Grove; Yu Zuo; Rachel Edwards; Donna Palmer; Vincenzo Cerullo; Jun Teruya; Philip Ng

Although the desire to develop gene therapy for hemophilia B is high, safety remains a concern. Therefore, improving the therapeutic index of gene therapy vectors is an important goal. Thus, we evaluated the use of three bioengineered factor IX (FIX) variants with improved catalytic activity in the context of the helper-dependent adenoviral vector. The first vector expressed R338A-FIX, an FIX variant with the arginine at position 338 changed to an alanine, which resulted in a 2.9-fold higher specific activity (IU/mg) compared with the wild-type FIX. The second vector expressed FIX(VIIEGF1), a variant with the EGF-1 domain replaced with the EGF-1 domain from FVII, which resulted in a 3.4-fold increase in specific activity. The third expressed R338A + FIX(VIIEGF1), a novel variant containing both aforementioned modifications, which resulted in a 12.6-fold increase in specific activity. High-level, long-term, and stable expression of these three variants was observed in hemophilia B mice with no evidence of increased thrombogenicity compared with wild-type FIX. Thus, these bioengineered FIX variants can increase the therapeutic index of gene therapy vectors by permitting administration of lower doses to achieve the same therapeutic outcome. Furthermore, these variants may also be valuable for recombinant FIX protein replacement therapy.


Human Gene Therapy | 2011

Intrathecal Injection of Helper-Dependent Adenoviral Vectors Results in Long-Term Transgene Expression in Neuroependymal Cells and Neurons

Scott V. Dindot; Pasquale Piccolo; Nathan Grove; Donna Palmer; Nicola Brunetti-Pierri

Helper-dependent adenoviral (HDAd) vectors are devoid of all viral genes and result in long-term transgene expression in the absence of chronic toxicity. Because of their ability to infect post-mitotic cells, including cells of the central nervous system, HDAd vectors are particularly attractive for brain-directed gene therapy. In this study, we show that intrathecal injection of HDAd results in extensive transduction of ependymal cells and sustained expression of the transgene up to 1 year post-administration. We also demonstrate, for the first time, the ability of HDAd injected by this route of delivery to transduce neuronal cells. The transduced neuroepithelial cells can be potentially used to secrete therapeutic proteins into the cerebrospinal fluid and provide them via cross-correction to nontransduced cells. Targeting of neuronal cells and long-term transgene expression make this approach attractive for the treatment of several neurologic diseases.


Molecular Therapy | 2010

Vasoactive intestinal peptide increases hepatic transduction and reduces innate immune response following administration of helper-dependent Ad.

Francesco Vetrini; Nicola Brunetti-Pierri; Donna Palmer; Terry Bertin; Nathan Grove; Milton J. Finegold; Philip Ng

Helper-dependent adenoviral vectors (HDAd) are effective tools for liver-directed gene therapy because they can mediate long-term transgene expression in the absence of chronic toxicity. However, high vector doses required for efficient hepatocyte transduction by intravascular delivery result in systemic vector dissemination and dose-dependent activation of the innate immunity. Therefore, strategies to achieve high-efficiency hepatocyte transduction using low vector doses and/or to reduce the acute elevations of proinflammatory cytokines and chemokines may have significant clinical potential. Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide involved in the regulation of hepatic blood flow and plays an important role as modulator of immune functions. Here, we show that VIP pretreatment in mice is able to increase hepatocyte transduction by HDAd, decrease vector uptake by the spleen, reduce elevation of proinflammatory serum cytokines interleukin (IL)-6 and IL-12, and reduce serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) following intravenous HDAd injection. VIP pretreatment also resulted in a reduction in the expression of the chemokines macrophage-inflammatory protein 2 (MIP-2), monocyte chemotactic protein 1 (MCP-1), and regulated on activation normal T-cell expressed and secreted (RANTES) in the livers of mice injected with HDAd. These results suggest that VIP can improve the therapeutic index of HDAd by increasing hepatocyte transduction efficiency while reducing cytokine and chemokine expression following intravascular delivery of HDAd.


Molecular therapy. Nucleic acids | 2016

Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors.

Donna Palmer; Nathan Grove; Jordan Ing; Ana M. Crane; Koen J. T. Venken; Brian R. Davis; Philip Ng

Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration, and 97.4-100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6-16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10-3) necessitated negative selection for piggyBac-excision product isolation.Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50–64.6% after positive selection for vector integration, and 97.4–100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9–57.1% after positive selection and 87.5–100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6–16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10−3) necessitated negative selection for piggyBac-excision product isolation.


Molecular therapy. Methods & clinical development | 2016

Helper virus-mediated downregulation of transgene expression permits production of recalcitrant helper-dependent adenoviral vector

Donna Palmer; Nathan Grove; Philip Ng

Helper-dependent adenoviral vectors (HDAd) that express certain transgene products are impossible to produce because the transgene product is toxic to the producer cells, especially when made in large amounts during vector production. Downregulating transgene expression from the HDAd during vector production is a way to solve this problem. In this report, we show that this can be accomplished by inserting the target sequence for the adenoviral VA RNAI into the 3’ untranslated region of the expression cassette in the HDAd. Thus during vector production, when the producer cells are coinfected with both the helper virus (HV) and the HDAd, the VA RNAI produced by the HV will target the transgene mRNA from the HDAd via the endogenous cellular RNAi pathway. Once the HDAd is produced and purified, transduction of the target cells results in unimpeded transgene expression because of the absence of HV. This simple and universal strategy permits for the robust production of otherwise recalcitrant HDAds.

Collaboration


Dive into the Nathan Grove's collaboration.

Top Co-Authors

Avatar

Donna Palmer

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Philip Ng

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nicola Brunetti-Pierri

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Vetrini

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur L. Beaudet

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Rice

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Pasquale Piccolo

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Amanda Rosewell

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge