Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan Habegger is active.

Publication


Featured researches published by Nathan Habegger.


Topology | 2000

The Kontsevich integral and Milnor’s invariants

Nathan Habegger; Gregor Masbaum

Abstract A formula for computing the Milnor (concordance) invariants from the Kontsevich integral is obtained. The reduced Kontsevich integral (with values in the quotient by all loop diagrams) is shown to be the universal concordance invariant of finite type. Some applications are discussed.


Commentarii Mathematici Helvetici | 1982

Une variété de dimension 4 avec forme d'intersection paire et signature-8

Nathan Habegger

Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungshinweisen und unter deren Einhaltung weitergegeben werden. Das Veröffentlichen von Bildern in Printund Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.


Topology | 1986

Knots and links in codimension greater than 2

Nathan Habegger

Abstract A classification of links in codimension greater than 2 in the manifold S 1 × R n − 1 is obtained. Exact sequences involving classical knot and link groups in codimension greater than 2 are given a surgery theoretical interpretation.


Journal of Knot Theory and Its Ramifications | 2003

Tree level Lie algebra structures of perturbative invariants

Nathan Habegger; Wolfgang Pitsch

We study two different Lie algebra structures on the space of Feynman diagrams at tree level. We show that each such structure arises naturally from a tower of automorphism groups of nilpotent quotients of a free group.


Duke Mathematical Journal | 2002

The topological IHX relation, pure braids, and the Torelli group

Sylvain Gervais; Nathan Habegger

We prove that the filtration on the pure braid group on g strands, induced by the lower central series of the Torelli group of a genus g surface with one boundary component, coincides with its lower central series, shifted by one. In particular, the cubic Jacobi relations in the pure braid group are quadratic relations in the Torelli group.


Journal of Knot Theory and Its Ramifications | 2001

THE TOPOLOGICAL IHX RELATION

Nathan Habegger

We give an exposition of the classification of finite type invariants of homology 3-spheres. A new conceptually-based proof of the topological IHX relation, needed to show the well-definedness of diagrams to manifolds, is given


Topology and its Applications | 1984

Obstructions to embedding disks II (a proof of a conjecture of Hudson)

Nathan Habegger

Abstract For a manifold W of dimension m with boundary ∂W , the vanishing of certain intersection and self-intersection invariants is a necessary condition to embedding n -disks. For ( W , ∂W ) 2 n − m connected, it is also sufficient.


Topology and its Applications | 1984

Embedding up to homotopy type— The first obstruction

Nathan Habegger

Abstract For a 2 n − m connected map from an n -dimensional complex to a m -dimensional manifold, an obstruction to embedding up to homotopy type is defined. The vanishing of this obstruction is a necessary and sufficient condition (in the 2 n − m connected case, 2 n − m ⩾ 2, m − n ⩾3) to obtain an embedding up to homotopy type. In case the target manifold is Euclidean space, it is shown that the obstruction vanishes if and only if certain Thom operations are trivial. A classification theorem is given in the 2 n − m +1 connected case.


arXiv: Geometric Topology | 2008

ON THE CLASSIFICATION OF LINKS UP TO FINITE TYPE

Nathan Habegger; Jean-Baptiste Meilhan

We use an action, of 2l-component string links on l-component string links, defined by the first author and Xiao-Song Lin, to lift the indeterminacy of finite type link invariants. The set of links up to this new indeterminacy is in bijection with the orbit space of the restriction of this action to the stabilizer of the identity. Structure theorems for the sets of links up to C_n-equivalence and Self-C_n-equivalence are also given.


Topology and its Applications | 1996

Homotopy classes of 2 disjoint 2p-spheres in R3p + 1

Nathan Habegger; U Kaiser

Abstract For p ≠ 3,7, p > 1, link homotopy classes of link maps S 2p ⊔ S 2p → S 3p + 1 are classified using the α-invariant. It is shown that any such link map is link homotopic to an embedded link. These results are obtained through a study of the homotopy type of the complement of the image of a map from one sphere to another.

Collaboration


Dive into the Nathan Habegger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Baptiste Meilhan

Research Institute for Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar

U Kaiser

Folkwang University of the Arts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stavros Garoufalidis

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge