Nathan J. Castro
George Washington University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan J. Castro.
Annals of Biomedical Engineering | 2012
Nathan J. Castro; S. Adam Hacking; Lijie Grace Zhang
This review provides a brief synopsis of the anatomy and physiology of the osteochondral interface, scaffold-based and non-scaffold based approaches for engineering both tissues independently as well as recent developments in the manufacture of gradient constructs. Novel manufacturing techniques and nanotechnology will be discussed with potential application in osteochondral interfacial tissue engineering.
Nanotechnology | 2013
Benjamin Holmes; Nathan J. Castro; Jian Li; Michael Keidar; Lijie Grace Zhang
Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Youngs modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.
Nanoscale | 2015
Nathan J. Castro; Joseph R. O'Brien; Lijie Grace Zhang
The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.
Scientific Reports | 2016
Shida Miao; Wei Zhu; Nathan J. Castro; Margaret Nowicki; Xuan Zhou; Haitao Cui; John Fisher; Lijie Grace Zhang
Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques.
Acta Biomaterialia | 2015
Wei Zhu; Mian Wang; Yebo Fu; Nathan J. Castro; Sidney W. Fu; Lijie Grace Zhang
Traditional breast cancer (BrCa) bone metastasis models contain many limitations with regards to controllability, reproducibility and flexibility of design. In this study, a novel biomimetic bone microenvironment was created by integrating hydroxyapatite (HA) and native bioactive factors deposited by osteogenic induction of human bone marrow mesenchymal stem cells (MSCs) within a cytocompatible chitosan hydrogel. It was found that a 10% nanocrystalline HA (nHA) chitosan scaffold exhibited the highest BrCa adhesion and proliferation when compared to chitosan scaffolds with 20% nHA, 10% and 20% microcrystalline HA as well as amorphous HA. This 3-D tunable bone scaffold can provide a biologically relevant environment, increase cell-cell and cell-matrix interactions as found in native bone, and retain the behavior of BrCa cells with different metastasis potential (i.e. highly metastatic MDA-MB-231, less metastatic MCF-7 and transfected MDA-MB-231). The co-culture of MSCs and MDA-MB-231 in this bone model illustrated that MSCs have the capacity to upregulate the expression of the well-known metastasis-associated gene metadherin within BrCa cells. In summary, this study illustrates the ability of our 3-D bone model to create a biomimetic environment conducive to recapitulating the behavior of metastatic BrCa cells, making it a promising tool for in vitro BrCa cell bone metastasis study and for the discovery of potential therapeutics.
Aiche Journal | 2014
Nathan J. Castro; Christopher M. O'Brien; Lijie Grace Zhang
Scaffold-based interfacial tissue engineering aims to not only provide the structural and mechanical framework for cellular growth and tissue regeneration, but also direct cell behavior. Due to the disparity in composition of the osteochondral (cartilage and bone) interface, this work has developed a novel biomimetic biphasic nanocomposite scaffold integrating two biocompatible polymers containing tissue-specific growth factor-encapsulated core-shell nanospheres. Specifically, a poly(caprolactone) (PCL)-based bone layer was successfully integrated with a poly(ethylene glycol) (PEG) hydrogel cartilage layer. In addition, a novel nanosphere fabrication technique for efficient growth factor encapsulation and sustained delivery via a wet coaxial electrospray technique was developed. Human bone marrow mesenchymal stem cell (hMSC) adhesion, osteogenic, and chondrogenic differentiation were evaluated. Our in vitro results showed significantly improved hMSC adhesion and differentiation in bone and cartilage layers, respectively. Studies have demonstrated promising results with novel biphasic nanocomposite scaffold for osteochondral tissue regeneration, thus, warranting further studies.
Scientific Reports | 2016
Wei Zhu; Se-Jun Lee; Nathan J. Castro; Dayun Yan; Michael Keidar; Lijie Grace Zhang
Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.
Tissue Engineering Part B-reviews | 2012
Benjamin Holmes; Nathan J. Castro; Lijie Grace Zhang; Eyal Zussman
Within the field tissue engineering, new and novel approaches to bone and cartilage regeneration have been explored. These novel approaches are being developed in order to mediate and expedite the natural healing process. Electrospinning is a well-established nano-/microtechnique for the manufacture of biomimetic fibrous constructs for various tissue growth and healing. This review will focus on recent advancements in the area of tissue-engineered construct fabrication via electrospinning-based technologies with emphasis on multimaterial electrospinning, incorporation of morphogenetic/bioactive factors, as well as the combination of electrospraying for bone and cartilage regeneration. The review will also place special emphasis on novel biologically inspired nanomaterials for electrospun nanocomposites.
Nanotechnology | 2016
Wei Zhu; Nathan J. Castro; Haitao Cui; Xuan Zhou; Benchaa Boualam; Robert McGrane; Robert I. Glazer; Lijie Grace Zhang
Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.
Materials Today | 2017
Shida Miao; Nathan J. Castro; Margaret Nowicki; Lang Xia; Haitao Cui; Xuan Zhou; Wei Zhu; Se-Jun Lee; Kausik Sarkar; Giovanni Vozzi; Yasuhiko Tabata; John Fisher; Lijie Grace Zhang
Four dimensional (4D) printing is an emerging technology with great capacity for fabricating complex, stimuli-responsive 3D structures, providing great potential for tissue and organ engineering applications. Although the 4D concept was first highlighted in 2013, extensive research has rapidly developed, along with more-in-depth understanding and assertions regarding the definition of 4D. In this review, we begin by establishing the criteria of 4D printing, followed by an extensive summary of state-of-the-art technological advances in the field. Both transformation-preprogrammed 4D printing and 4D printing of shape memory polymers are intensively surveyed. Afterwards we will explore and discuss the applications of 4D printing in tissue and organ regeneration, such as developing synthetic tissues and implantable scaffolds, as well as future perspectives and conclusions.