Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan Jeffery is active.

Publication


Featured researches published by Nathan Jeffery.


Journal of Anatomy | 2004

Prenatal growth and development of the modern human labyrinth

Nathan Jeffery; Fred Spoor

The modern human bony labyrinth is morphologically distinct from that of all other primates, showing derived features linked with vestibular function and the overall shape of the cranial base. However, little is known of how this unique morphology emerges prenatally. This study examines in detail the developing fetal human labyrinth, both to document this basic aspect of cranial biology, and more specifically, to gain insight into the ontogenetic basis of its phylogenetically derived morphology. Forty‐one post‐mortem human fetuses, ranging from 9 to 29 weeks gestation, were investigated with high‐resolution magnetic resonance imaging. Quantitative analyses of the labyrinthine morphology revealed a number of interesting age‐related trends. In addition, our findings show that: (1) the prenatal labyrinth attains an adult equivalent size between 17 and 19 weeks gestation; (2) within the period investigated, shape changes to all or most of the labyrinth cease after the 17–19‐week size maturation point or after the otic capsule ossifies; (3) fetal cochlea development correlates with the surrounding petrosal morphology, but not with the midline basicranium; (4) gestational age‐related rotations of the ampullae and cochlea relative to the lateral canal, and posterior canal torsion are similar to documented phylogenetic trends whereas other trends remain distinct. Findings are discussed in terms of the ontogenetic processes and mechanisms that most likely led, in part, to the emergence of the phylogenetically derived adult modern human labyrinth.


Journal of Biomechanics | 2011

Micro-computed tomography with iodine staining resolves the arrangement of muscle fibres

Nathan Jeffery; Robert S. Stephenson; J.A. Gallagher; Jonathan C. Jarvis; Philip G. Cox

We illustrate here microCT images in which contrast between muscle and connective tissue has been achieved by means of staining with iodine. Enhancement is shown to be dependent on the concentration of iodine solution (I(2)KI), time in solution and specimen size. Histological examination confirms that the arrangement of individual muscle fibres can be visualised on the enhanced microCT images, and that the iodine accumulates in the muscle fibres in preference to the surrounding connective tissues. We explore the application of this technique to describe the fibrous structure of skeletal muscle, and conclude that it has the potential to become a non-destructive and cost-effective method for investigating muscle fascicle architecture, particularly in comparative morphological studies.


PLOS ONE | 2012

Functional Evolution of the Feeding System in Rodents

Philip G. Cox; Emily J. Rayfield; Michael J. Fagan; Anthony Herrel; Todd C. Pataky; Nathan Jeffery

The masticatory musculature of rodents has evolved to enable both gnawing at the incisors and chewing at the molars. In particular, the masseter muscle is highly specialised, having extended anteriorly to originate from the rostrum. All living rodents have achieved this masseteric expansion in one of three ways, known as the sciuromorph, hystricomorph and myomorph conditions. Here, we used finite element analysis (FEA) to investigate the biomechanical implications of these three morphologies, in a squirrel, guinea pig and rat. In particular, we wished to determine whether each of the three morphologies is better adapted for either gnawing or chewing. Results show that squirrels are more efficient at muscle-bite force transmission during incisor gnawing than guinea pigs, and that guinea pigs are more efficient at molar chewing than squirrels. This matches the known diet of nuts and seeds that squirrels gnaw, and of grasses that guinea pigs grind down with their molars. Surprisingly, results also indicate that rats are more efficient as well as more versatile feeders than both the squirrel and guinea pig. There seems to be no compromise in biting efficiency to accommodate the wider range of foodstuffs and the more general feeding behaviour adopted by rats. Our results show that the morphology of the skull and masticatory muscles have allowed squirrels to specialise as gnawers and guinea pigs as chewers, but that rats are high-performance generalists, which helps explain their overwhelming success as a group.


Journal of Anatomy | 2000

Using diagnostic radiology in human evolutionary studies

Fred Spoor; Nathan Jeffery; Frans W. Zonneveld

This paper reviews the application of medical imaging and associated computer graphics techniques to the study of human evolutionary history, with an emphasis on basic concepts and on the advantages and limitations of each method. Following a short discussion of plain film radiography and pluridirectional tomography, the principles of computed tomography (CT) and magnetic resonance imaging (MRI) and their role in the investigation of extant and fossil morphology are considered in more detail. The second half of the paper deals with techniques of 3‐dimensional visualisation based on CT and MRI and with quantitative analysis of digital images.


PLOS ONE | 2012

Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

Robert S. Stephenson; Mark R. Boyett; George Hart; Theodora Nikolaidou; Xue Cai; Nelson Alphonso; Nathan Jeffery; Jonathan C. Jarvis

The general anatomy of the cardiac conduction system (CCS) has been known for 100 years, but its complex and irregular three-dimensional (3D) geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT) as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I2KI), we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN) and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2011

Reviewing the Morphology of the Jaw‐Closing Musculature in Squirrels, Rats, and Guinea Pigs with Contrast‐Enhanced MicroCt

Philip G. Cox; Nathan Jeffery

Rodents are defined by their unique masticatory apparatus and are frequently separated into three nonmonophyletic groups—sciuromorphs, hystricomorphs, and myomorphs—based on the morphology of their masticatory muscles. Despite several comprehensive dissections in previous work, inconsistencies persist as to the exact morphology of the rodent jaw‐closing musculature, particularly, the masseter. Here, we review the literature and document for the first time the muscle architecture noninvasively and in 3D by using iodine‐enhanced microCT. Observations and measurements were recorded with reference to images of three individuals, each belonging to one of the three muscle morphotypes (squirrel, guinea pig, and rat). Results revealed an enlarged superficial masseter muscle in the guinea pig compared with the rat and squirrel, but a reduced deep masseter (possibly indicating reduced efficiency at the incisors). The deep masseter had expanded forward to take an origin on the rostrum and was also separated into anterior and posterior parts in the rat and squirrel. The zygomaticomandibularis muscle was split into anterior and posterior parts in all the three specimens by the masseteric nerve, and in the rat and guinea pig had an additional rostral expansion through the infraorbital foramen. The temporalis muscle was found to be considerably larger in the rat, and its separation into anterior and posterior parts was only evident in the rat and squirrel. The pterygoid muscles were broadly similar in all three specimens, although the internal pterygoid was somewhat enlarged in the guinea pig implying greater lateral movement of the mandible during chewing in this species. Anat Rec,, 2011.


Journal of Anatomy | 2011

Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity

Philip G. Cox; Michael J. Fagan; Emily J. Rayfield; Nathan Jeffery

Rodents are defined by a uniquely specialized dentition and a highly complex arrangement of jaw‐closing muscles. Finite element analysis (FEA) is an ideal technique to investigate the biomechanical implications of these specializations, but it is essential to understand fully the degree of influence of the different input parameters of the FE model to have confidence in the model’s predictions. This study evaluates the sensitivity of FE models of rodent crania to elastic properties of the materials, loading direction, and the location and orientation of the models’ constraints. Three FE models were constructed of squirrel, guinea pig and rat skulls. Each was loaded to simulate biting on the incisors, and the first and the third molars, with the angle of the incisal bite varied over a range of 45°. The Young’s moduli of the bone and teeth components were varied between limits defined by findings from our own and previously published tests of material properties. Geometric morphometrics (GMM) was used to analyse the resulting skull deformations. Bone stiffness was found to have the strongest influence on the results in all three rodents, followed by bite position, and then bite angle and muscle orientation. Tooth material properties were shown to have little effect on the deformation of the skull. The effect of bite position varied between species, with the mesiodistal position of the biting tooth being most important in squirrels and guinea pigs, whereas bilateral vs. unilateral biting had the greatest influence in rats. A GMM analysis of isolated incisor deformations showed that, for all rodents, bite angle is the most important parameter, followed by elastic properties of the tooth. The results here elucidate which input parameters are most important when defining the FE models, but also provide interesting glimpses of the biomechanical differences between the three skulls, which will be fully explored in future publications.


Journal of Anatomy | 2013

The morphology of the mouse masticatory musculature

Hester Baverstock; Nathan Jeffery; Samuel N. Cobb

The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft‐tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro‐dissection and non‐invasive segmentation of iodine‐enhanced micro‐computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system.


Journal of Anatomy | 2010

Semicircular canals and agility: the influence of size and shape measures

Philip G. Cox; Nathan Jeffery

The semicircular canals of the inner ear sense angular accelerations and decelerations of the head and enable co‐ordination of posture and body movement, as well as visual stability. Differences of agility and spatial sensitivity among species have been linked to interspecific differences in the relative size of the canals, particularly the radius of curvature (R) and the ratio of the canal plane area to streamline length (P/L). Here we investigate the scaling relationships of these two size variables and also out‐of‐plane torsion in the three semicircular canals (anterior, posterior and lateral), in order to assess which is more closely correlated with body size and locomotor agility. Measurements were computed from 3D landmarks taken from magnetic resonance images of a diverse sample of placental mammals encompassing 16 eutherian orders. Body masses were collected from the literature and an agility score was assigned to each species. The R and P/L of all three semicircular canals were found to have highly significant positive correlations with each other and no statistical difference was found between the slope of 2P/L against R and 1. This indicated that, contrary to initial hypotheses, there is little difference between 2P/L and R as measures of semicircular canal size. A measure of the in‐plane circularity of the canal was obtained by dividing 2P/L by R and out‐of‐plane torsion was measured as angular deviation from a plane of best fit. It was predicted that deviations from in‐plane and out‐of‐plane circularity would increase at small body size due to the constraints of fitting a proportionately larger canal into a smaller petrous bone. However, neither measurement was found to have a significant correlation with body mass, indicating that deviations from circularity (both in‐plane and out‐of‐plane) are not sufficient to alter P/L to an extent that would impact the sensitivity of the canals. 2P/L and R were both shown to be significantly correlated with locomotor agility. The posterior canal was the least correlated with agility, suggesting that it may be generally less closely aligned to the direction of movement than the anterior canal. Of the three canals, the lateral canal was the most highly correlated with agility. In particular, it could be used to distinguish between species that move in a largely 2D environment and those that locomote in 3D space (aerial, arboreal and aquatic species). This complements previous work suggesting that the lateral canal primarily commands navigation, whereas the vertical canals control reflex adjustments. It was also found that 2P/L is substantially better correlated with agility than is R in the lateral canal. This result is intriguing given the above finding that there is no statistical difference between 2P/L and R, and requires further investigation.


Journal of Anatomy | 2002

Differential regional brain growth and rotation of the prenatal human tentorium cerebelli

Nathan Jeffery

Folds of dura mater, the falx cerebri and tentorium cerebelli, traverse the vertebrate endocranial cavity and compartmentalize the brain. Previous studies suggest that the tentorial fold has adopted an increasingly important role in supporting the increased load of the cerebrum during human evolution, brought about by encephalization and an adaptation to bipedal posture. Ontogenetic studies of the fetal tentorium suggest that its midline profile rotates inferoposteriorly towards the foramen magnum in response to disproportionate growth of the cerebrum. This study tests the hypothesis that differential growth of the cerebral and cerebellar components of the brain underlies the inferoposterior rotation of the tentorium cerebelli during human fetal development. Brain volumes and tentorial angles were taken from high‐resolution magnetic resonance images of 46 human fetuses ranging from 10 to 29 gestational weeks. Apart from the expected increases of both supratentorial and infratentorial brain volumes with age, the results confirm previous studies showing a significant relative enlargement of the supratentorial volume. Correlated with this enlargement was a rotation of the midline section of the tentorium towards the posterior cranial base. These findings support the concept that increases of supratentorial volume relative to infratentorial volume affect an inferoposterior rotation of the human fetal tentorium cerebelli. These results are discussed in the context of the role played by the tentorium cerebelli during human evolution and underline implications for phylogenetic and ontogenetic models of encephalization.

Collaboration


Dive into the Nathan Jeffery's collaboration.

Top Co-Authors

Avatar

Philip G. Cox

Hull York Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Boyde

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Jarvis

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N.P. Thomas

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

V.L. Adams

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

David Mills

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

G.R. Davis

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge