Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan Mathewson is active.

Publication


Featured researches published by Nathan Mathewson.


Nature Immunology | 2016

Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease

Nathan Mathewson; Robert R. Jenq; Anna V. Mathew; Mark J. Koenigsknecht; Alan M. Hanash; Tomomi Toubai; Katherine Oravecz-Wilson; Shin Rong Wu; Yaping Sun; Corinne Rossi; Jaeman Byun; Yusuke Shono; Caroline A. Lindemans; Marco Calafiore; Thomas C. Schmidt; Kenya Honda; Vincent B. Young; Subramaniam Pennathur; Marcel R.M. van den Brink; Pavan Reddy

The effect of alterations in intestinal microbiota on microbial metabolites and on disease processes such as graft-versus-host disease (GVHD) is not known. Here we carried out an unbiased analysis to identify previously unidentified alterations in gastrointestinal microbiota–derived short-chain fatty acids (SCFAs) after allogeneic bone marrow transplant (allo-BMT). Alterations in the amount of only one SCFA, butyrate, were observed only in the intestinal tissue. The reduced butyrate in CD326+ intestinal epithelial cells (IECs) after allo-BMT resulted in decreased histone acetylation, which was restored after local administration of exogenous butyrate. Butyrate restoration improved IEC junctional integrity, decreased apoptosis and mitigated GVHD. Furthermore, alteration of the indigenous microbiota with 17 rationally selected strains of high butyrate–producing Clostridia also decreased GVHD. These data demonstrate a heretofore unrecognized role of microbial metabolites and suggest that local and specific alteration of microbial metabolites has direct salutary effects on GVHD target tissues and can mitigate disease severity.


Journal of Immunology | 2013

PU.1-Dependent Transcriptional Regulation of miR-142 Contributes to Its Hematopoietic Cell–Specific Expression and Modulation of IL-6

Yaping Sun; John Sun; Toubai Tomomi; Evelyn Nieves; Nathan Mathewson; Hiroya Tamaki; Rebecca Evers; Pavan Reddy

MicroRNAs (miRs) have emerged as critical modulators of immune responses, but little is known about their transcriptional regulation and tissue specificity. miR-142 is specifically expressed in hematopoietic tissues and plays an important role in regulating immunity. In this study we identified the key transcriptional elements for regulation of miR-142 and its impact on TLR4-mediated expression of IL-6. The PU.1, C/EBPβ, and Runx1 transcription factor binding sites are conserved and constitutively occupied by the respective transcription factors in the miR-142 gene promoter only in the hematopoietic cells. Specific knockdown experiments in hematopoietic cells and rescue experiments in nonhematopoietic cells show that PU.1 is critical for miR-142 gene expression and that it synergizes with Runx1, C/EBPβ, and CBFβ. Furthermore, TLR4 stimulation enhanced miR-155 whereas experiments with knockdown and mimic expression of miR-155 demonstrated that miR-155 negatively regulates miR-142-3p expression by targeting PU.1. Thus, TLR4 stimulation represses PU.1, resulting in downregulation of miR-142 and increased expression of IL-6. These results collectively reveal the direct cis-acting sequences of miR-142 specific promoter and that transcription factor PU.1 is necessary for its exclusive expression in hematopoietic cells and regulation of IL-6.


Blood | 2013

Neddylation plays an important role in the regulation of murine and human dendritic cell function

Nathan Mathewson; Tomomi Toubai; Steven Kapeles; Yaping Sun; Katherine Oravecz-Wilson; Hiroya Tamaki; Ying Wang; Guoqing Hou; Yi Sun; Pavan Reddy

Posttranslational protein modifications (PTMs) are necessary for cells to function properly. The role of PTMs in regulating immune responses, specifically those mediated by dendritic cells (DCs), which are critical for both innate and adaptive immunity, is not well understood. Utilizing multiple but complementary approaches, we determined the role of an important but less understood type of PTM, namely, neddylation, in regulating DC functions. Inhibition of neddylation suppressed the release of proinflammatory cytokines by DCs in response to Toll-like receptor, nucleotide oligomerization domain-like receptor, and noninfectious CD40L stimulation. These effects were more profound than those mediated by the proteasome inhibitor bortezomib or a commonly used antiinflammatory agent, dexamethasone. Targeting neddylation also suppressed the ability of DCs to stimulate murine allogeneic T cells in vitro and in vivo and human allogeneic T-cell responses in vitro. Mechanistic studies demonstrated that inhibition of neddylation reduced both canonical and noncanonical nuclear factor-κB (NF-κB) activity. Neddylation inhibition prevented the degradation of inhibitor-κB and thus reduced the translocation and activation of NF-κB, but without perturbation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Thus, blocking neddylation could be a novel strategy for mitigating immune-mediated disease processes.


Blood | 2014

Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice

Tomomi Toubai; Guoqing Hou; Nathan Mathewson; Chen Liu; Ying Wang; Katherine Oravecz-Wilson; Emily Cummings; Corinne Rossi; Rebecca Evers; Yaping Sun; Julia Wu; Sung Won Choi; Dexing Fang; Pan Zheng; Yang Liu; Pavan Reddy

Activation of sialic-acid-binding immunoglobulin-like lectin-G (Siglec-G) by noninfectious damage-associated molecular patterns controls innate immune responses. However, whether it also regulates T-cell-mediated adaptive immune responses is not known. Graft-versus-host reaction is a robust adaptive immune response caused by allogeneic hematopoietic cell transplantation that have been activated by antigen-presenting cells (APCs) in the context of damaged host tissues following allogeneic hematopoietic cell transplantation. The role of infectious and noninfectious pattern recognition receptor-mediated activation in the induction and aggravation of graft-versus-host disease (GVHD) is being increasingly appreciated. But the role of pathways that control innate immune responses to noninfectious stimuli in modulating GVHD has heretofore not been recognized. We report that Siglec-G expression on host APCs, specifically on hematopoietic cells, negatively regulates GVHD in multiple clinically relevant murine models. Mechanistic studies with various relevant Siglec-G and CD24 knockout mice and chimeric animals, along with rescue experiments with novel CD24 fusion protein demonstrate that enhancing the interaction between Siglec-G on host APCs with CD24 on donor T cells attenuates GVHD. Taken together, our data demonstrate that Siglec-G-CD24 axis, controls the severity of GVHD and suggest that enhancing this interaction may represent a novel strategy for mitigating GVHD.


Journal of Clinical Investigation | 2015

Mature T cell responses are controlled by microRNA-142

Yaping Sun; Katherine Oravecz-Wilson; Nathan Mathewson; Ying Wang; Richard C. McEachin; Chen Liu; Tomomi Toubai; Julia Wu; Corinne Rossi; Thomas Braun; Thomas L. Saunders; Pavan Reddy

T cell proliferation is critical for immune responses; however, the molecular mechanisms that mediate the proliferative response are poorly understood. MicroRNAs (miRs) regulate various molecular processes, including development and function of the immune system. Here, utilizing multiple complementary genetic and molecular approaches, we investigated the contribution of a hematopoietic-specific miR, miR-142, in regulating T cell responses. T cell development was not affected in animals with a targeted deletion of Mir142; however, T cell proliferation was markedly reduced following stimulation both in vitro and in multiple murine models of graft-versus-host disease (GVHD). miR-142-deficient T cells demonstrated substantial cell-cycling defects, and microarray and bioinformatics analyses revealed upregulation of genes involved in cell cycling. Moreover, 2 predicted miR-142 target genes, the atypical E2F transcription factors E2f7 and E2f8, were most highly upregulated in miR-142-deficient cells. Clustered regularly interspaced short palindromic repeat interference-mediated (CRISPRi-mediated) silencing of E2F7 and E2F8 in miR-142-deficient T cells ameliorated cell-cycling defects and reduced GVHD, and overexpression of these factors in WT T cells inhibited the proliferative response. Together, these results identify a link between hematopoietic-specific miR-142 and atypical E2F transcription factors in the regulation of mature T cell cycling and suggest that targeting this interaction may be relevant for mitigating GVHD.


Journal of Clinical Investigation | 2013

Allogeneic T cell responses are regulated by a specific miRNA-mRNA network

Yaping Sun; Isao Tawara; Meng Zhao; Zhaohui S. Qin; Tomomi Toubai; Nathan Mathewson; Hiroya Tamaki; Evelyn Nieves; Arul M. Chinnaiyan; Pavan Reddy

Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses.


Biology of Blood and Marrow Transplantation | 2013

Influence of donor microbiota on the severity of experimental graft-versus-host-disease.

Isao Tawara; Chen Liu; Hiroya Tamaki; Tomomi Toubai; Yaping Sun; Rebecca Evers; Evelyn Nieves; Nathan Mathewson; Gabriel Núñez; Pavan Reddy

The link between microbial flora and the shaping of immune responses is being increasingly appreciated, and recent data have uncovered a role for recipient microbiota in the severity of graft-versus-host disease (GVHD). The impact of donor microbiota on T cell-mediated alloresponses and GVHD is not known, however. Using multiple clinically relevant murine models, we analyzed the effect of donor microbiota on the severity of GVHD induced by T cells from specific pathogen-free and germ-free donors, and found that donor microbiota does not alter the expansion or differentiation of alloreactive T cells or the severity of GVHD.


Blood | 2013

Host-derived CD8+ dendritic cells are required for induction of optimal graft-versus-tumor responses after experimental allogeneic bone marrow transplantation

Tomomi Toubai; Yaping Sun; Gary D. Luker; Jun Liu; Kathryn E. Luker; Isao Tawara; Rebecca Evers; Chen Liu; Nathan Mathewson; Chelsea Malter; Evelyn Nieves; Sung Choi; Kenneth M. Murphy; Pavan Reddy

The graft-versus-tumor (GVT) effect after allogeneic hematopoietic cell transplantation (allo-HCT) represents an effective form of immunotherapy against many malignancies. Meaningful separation of the potentially curative GVT responses from graft-versus-host disease (GVHD), the most serious toxicity following T-cell replete allo-HCT, has been an elusive goal. GVHD is initiated by alloantigens, although both alloantigens and tumor-specific antigens (TSAs) initiate GVT responses. Emerging data have illuminated a role for antigen-presenting cells (APCs) in inducing alloantigen-specific responses. By using multiple clinically relevant murine models, we show that a specific subset of host-derived APCs-CD8(+) dendritic cells (DCs)-enhances TSA responses and is required for optimal induction of GVT. Stimulation of TLR3, which among host hematopoietic APC subsets is predominantly expressed on CD8(+) DCs, enhanced GVT without exacerbating GVHD. Thus, strategies that modulate host APC subsets without direct manipulation of donor T cells could augment GVT responses and enhance the efficacy of allo-HCT.


Journal of Leukocyte Biology | 2012

Donor- but not host-derived interleukin-10 contributes to the regulation of experimental graft-versus-host disease

Isao Tawara; Yaping Sun; Chen Liu; Tomomi Toubai; Evelyn Nieves; Rebecca Evers; Mariem Alrubaie; Nathan Mathewson; Hiroya Tamaki; Pavan Reddy

IL‐10 is a key immune‐regulatory cytokine, and its gene polymorphisms correlate with severity of clinical GVHD. IL‐10 is made by a variety of donor and host cells, but the functional relevance of its source and its role in the biology of acute GVHD are not well understood. We used preclinical models to examine the relevance of IL‐10−/− in donor and host cellular subsets on the severity of GVHD. IL‐10−/− in host tissues or in the donor grafts did not alter donor Teff‐mediated severity of GVHD. Furthermore, neither host‐derived nor donor Teff‐derived IL‐10 was required for regulation of GVHD by WT CD4+CD25+ donor Tregs. By contrast, Treg‐derived IL‐10, although not obligatory, was necessary for optimal reduction of GVHD by mature donor Tregs. Importantly, IL‐10 from donor BM grafts was also critical for optimal donor Treg‐mediated suppression of GVHD. Together, these data suggest that IL‐10 does not contribute to the induction of GVHD severity by the Teffs. However, donor BM graft and Treg‐derived IL‐10 are important for donor Treg‐mediated suppression of GVHD.


Blood | 2015

BET bromodomain inhibition suppresses graft-versus-host disease after allogeneic bone marrow transplantation in mice.

Yaping Sun; Ying Wang; Tomomi Toubai; Katherine Oravecz-Wilson; Chen Liu; Nathan Mathewson; Julia Wu; Corinne Rossi; Emily Cummings; Depei Wu; Shaomeng Wang; Pavan Reddy

Acute graft-versus-host disease (GVHD) is the major obstacle of allogeneic bone marrow transplantation (BMT). Bromodomain and extra-terminal (BET) protein inhibitors selectively block acetyl-binding pockets of the bromodomains and modulate histone acetylation. Here, we report that inhibition of BET bromodomain (BRD) proteins with I-BET151 alters cytokine expression in dendritic cells (DCs) and T cells, including surface costimulatory molecules, in vitro and in vivo cytokine secretion, and expansion. Mechanistic studies with I-BET151 and JQ1, another inhibitor, demonstrate that these effects could be from disruption of association between BRD4 and acetyl-310 RelA of nuclear factor kappa B. Short-term administration early during BMT reduced GVHD severity and improved mortality in two different allogeneic BMT models but retained sufficient graft-versus-tumor effect. Thus inhibiting BRD proteins may serve as a novel approach for preventing GVHD.

Collaboration


Dive into the Nathan Mathewson's collaboration.

Top Co-Authors

Avatar

Pavan Reddy

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaping Sun

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Wu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Hiroya Tamaki

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Wang

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge