Nathan Musselwhite
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan Musselwhite.
Journal of the American Chemical Society | 2014
Geŕo ̂me Melaet; Walter T. Ralston; Cheng-Shiuan Li; Selim Alayoglu; Kwangjin An; Nathan Musselwhite; Bora Kalkan; Gabor A. Somorjai
Hydrogenations of CO or CO2 are important catalytic reactions as they are interesting alternatives to produce fine chemical feedstock hence avoiding the use of fossil sources. Using monodisperse nanoparticle (NP) catalysts, we have studied the CO/H2 (i.e., Fischer-Tropsch synthesis) and CO2/H2 reactions. Exploiting synchrotron based in situ characterization techniques such as XANES and XPS, we were able to demonstrate that 10 nm Co NPs cannot be reduced at 250 °C while supported on TiO2 or SiO2 and that the complete reduction of cobalt can only be achieved at 450 °C. Interestingly, cobalt oxide performs better than fully reduced cobalt when supported on TiO2. In fact, the catalytic results indicate an enhancement of 10-fold for the CO2/H2 reaction rate and 2-fold for the CO/H2 reaction rate for the Co/TiO2 treated at 250 °C in H2 versus Co/TiO2 treated at 450 °C. Inversely, the activity of cobalt supported on SiO2 has a higher turnover frequency when cobalt is metallic. The product distributions could be tuned depending on the support and the oxidation state of cobalt. For oxidized cobalt on TiO2, we observed an increase of methane production for the CO2/H2 reaction whereas it is more selective to unsaturated products for the CO/H2 reaction. In situ investigation of the catalysts indicated wetting of the TiO2 support by CoO(x) and partial encapsulation of metallic Co by TiO(2-x).
Nano Letters | 2012
Vladimir V. Pushkarev; Nathan Musselwhite; Kwangjin An; Selim Alayoglu; Gabor A. Somorjai
Vapor-phase transformations of furfural in H(2) over a series of Pt nanoparticles (NPs) with various particle sizes (1.5-7.1 nm size range) and shapes (rounded, cubes, octahedra) encapsulated in poly(vinylpyrrolidone) (PVP) and dispersed on MCF-17 mesoporous silica were investigated at ambient pressure in the 443-513 K temperature range. Furan and furfuryl alcohol (FFA) were two primary products as a result of furfural decarbonylation and hydrogenation reactions, respectively. Under conditions of the study both reactions exhibited structure sensitivity evidenced by changes in product selectivities, turnover rates (TORs), and apparent activation energies (E(A)s) with Pt particle size and shape. For instance, upon an increase in Pt particle size from 1.5 to 7.1 nm, the selectivity toward FFA increases from 1% to 66%, the TOR of FFA production increases from 1 × 10(-3) s(-1) to 7.6 × 10(-2) s(-1), and E(A) decreases from 104 kJ mol(-1) to 15 kJ mol(-1) (9.3 kPa furfural, 93 kPa H(2), 473 K). Conversely, under the same experimental conditions the decarbonylation reaction path is enhanced over smaller nanoparticles. The smallest NPs (1.5 nm) produced the highest selectivity (96%) and highest TOR values (8.8 × 10(-2) s(-1)) toward furan formation. The E(A) values for decarbonylation (∼62 kJ mol(-1)) was Pt particle size independent. Furan was further converted to propylene via a decarbonylation reaction, but also to dihydrofuran, tetrahydrofuran, and n-butanol in secondary reactions. Furfuryl alcohol was converted to mostly to 2-methylfuran.
Journal of Colloid and Interface Science | 2013
Kwangjin An; Nathan Musselwhite; Griffin Kennedy; Vladimir V. Pushkarev; L. Robert Baker; Gabor A. Somorjai
Mesoporous SiO(2), Al(2)O(3), TiO(2), Nb(2)O(5), and Ta(2)O(5) were synthesized through a soft-templating approach by a self-assembled framework of Pluronic P123 and utilized for the preparation of 3-dimensional catalysts as supports. Colloidal Pt nanoparticles with an average diameter of 1.9 nm were incorporated into the mesoporous oxides by sonication-induced capillary inclusion. The Pt nanoparticles supported on mesoporous oxides were evaluated in the hydrogenation reaction of furfural (70 torr furfural and 700 torr H(2) with a balance of He) to study the effect of catalyst supports on selectivity. In the temperature ranges of 170-240°C, the major products of this reaction were furan, furfuryl alcohol, and 2-methyl furan through a main reaction pathway of either decarbonylation or carbonyl group hydrogenation. While Pt nanoparticles with the size ranges of 1.5-7.1 exhibited strong structure-dependent selectivity, various supports loaded with only 1.9 nm Pt nanoparticles produced dominantly furan as a major product. Compared to the inert silica support, TiO(2) and Nb(2)O(5) facilitated an increase in the production of furfuryl alcohol via carbonyl group hydrogenation as a result of a charge transfer interaction between the Pt and the acidic surface of the oxides. The same trend was confirmed on 2-dimensional type catalysts, in which thin films of SiO(2), Al(2)O(3), TiO(2), Nb(2)O(5), and ZrO(2) were prepared as supports. When furfural hydrogenation was conducted (1 torr furfural, 100 torr H(2), and 659 torr He) over Pt nanoparticle monolayers deposited on oxide substrates, only TiO(2) was shown to increase the production of furfuryl alcohol, while other oxides produced furan.
Nano Letters | 2014
Kwangjin An; Qiao Zhang; Selim Alayoglu; Nathan Musselwhite; Jae-Youn Shin; Gabor A. Somorjai
Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 μmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction, the Pt/TiO2 was turned out as the best catalyst with great thermal stability as well as high reaction rate and product selectivity in high-temperature reforming reaction.
Topics in Catalysis | 2013
Nathan Musselwhite; Gabor A. Somorjai
Metal surface structure is often a crucial component in determining the activity and selectivity of heterogeneous catalytic reactions. Many important industrial reactions, such as ammonia synthesis, catalytic combustion, Fischer–Tropsch synthesis, and hydrocarbon reforming have been labeled as structure-sensitive. Metal single crystal studies utilizing ultra high vacuum techniques have repeatedly shown the importance of surface structure in reaction kinetics. Recent advances in the field of colloidal synthesis allow for fine control of the size and shape of metal nanoparticles, which permits catalytic studies of structure sensitivity to be performed on nanometer sized catalysts. It is clear that in order to optimize the performance of a catalyst, a complete molecular level understanding of the role of surface structure in the reaction of interest is essential. This article aims to review the importance of surface structure in heterogeneous catalysts, ranging from single crystals to size and shape controlled nanocatalysts.
Journal of the American Chemical Society | 2015
Nathan Musselwhite; Kyungsu Na; Kairat Sabyrov; Selim Alayoglu; Gabor A. Somorjai
Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed.
Journal of Physical Chemistry A | 2014
Kyungsu Na; Nathan Musselwhite; Xiaojun Cai; Selim Alayoglu; Gabor A. Somorjai
Selective C-C and C-H bond activations are an important catalytic process to produce various value-added hydrocarbons via reforming processes. For producing desired product with a high yield, control of reaction pathway through the design of catalyst and fundamental understanding and clarification of reaction mechanism are prerequisite. In this work, we designed heterogeneous catalysts by combining Pt nanoparticles and two different mesoporous zeolites with microporous frameworks of BEA and MFI for the hydrogenative model reforming reaction of hydrocarbon (i.e., methylcyclopentane). Depending on the catalyst combination, the reaction pathways of (i) dehydrogenation, (ii) ring-opening with isomerization, and ring-enlargement with (iii) hydrogenation and (iv) dehydrogenation of C5-cyclic ring to C6-cyclic ring (i.e., cyclohexane and benzene) can be controlled to produce various products with high yields. Furthermore, we revealed a reaction intermediate formed at the interface of Pt and zeolite by real-time surface vibrational sum-frequency generation spectroscopic studies. This study would provide practical and fundamental insights for design of heterogeneous catalyst for controlling reaction pathways.
Journal of the American Chemical Society | 2014
Nathan Musselwhite; Kyungsu Na; Selim Alayoglu; Gabor A. Somorjai
When pure mesoporous silica (MCF-17) was modified with aluminum (Al modified MCF-17), Lewis acid sites were created, but this material was inactive for the catalytic conversion (reforming) of n-hexane to isomers. When colloidally synthesized platinum nanoparticles were loaded onto traditional MCF-17, the catalyst showed very low activity toward isomer production. However, when Pt nanoparticles were loaded onto Al modified MCF-17, isomerization became the dominant catalytic pathway, with extremely high activity and selectivity (>90%), even at high temperatures (240-360 °C). This highly efficient catalytic chemistry was credited to the tandem effect between the acidic Al modified MCF-17 and the Pt metal.
Catalysis Letters | 2013
Nathan Musselwhite; Selim Alayoglu; Gérôme Melaet; Vladimir V. Pushkarev; Avery E. Lindeman; Kwangjin An; Gabor A. Somorjai
Composition and size of PtxRh1−x bimetallic nanoparticles were varied in order to study the effects in the catalytic reforming of n-hexane. Hexane isomerization, an analogue to the important industrial process of hydrocarbon reforming is a reaction in which we aim to investigate the molecular level details of catalysis. It is known, that in hydrocarbon isomerization, Pt atoms act to isomerize the reactants, while small amounts of “promoter metal” atoms (such as Rh, Ir, Re and Sn) provide C–C and C–H bond breaking activity. Herein, we report on the effect of composition and size in model bimetallic PtxRh1−x nanoparticle catalysts utilized in n-hexane reforming. Both nanoparticle composition and size were shown to influence catalytic turnover frequency and product selectivity. It was found, through ambient pressure X-ray photoelectron spectroscopy, that the surface of these nanoparticles is both dynamic, and Rh rich under relevant reaction conditions. The findings suggest that an ensemble effect exists, in which the highest isomer production occurs when Rh atoms are surrounded by Pt atoms on the metal surface.Graphical Abstract
Catalysis Science & Technology | 2017
Kairat Sabyrov; Nathan Musselwhite; Gérôme Melaet; Gabor A. Somorjai
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (∼95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-synthetic aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Bronsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Bronsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more ‘intimate’ metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.