Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan R. Schiele is active.

Publication


Featured researches published by Nathan R. Schiele.


Biofabrication | 2010

Laser-based direct-write techniques for cell printing

Nathan R. Schiele; David T. Corr; Yong Huang; Nurazhani Abdul Raof; Yubing Xie; Douglas B. Chrisey

Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.


Biomaterials | 2011

The Maintenance of Pluripotency Following Laser Direct-Write of Mouse Embryonic Stem Cells

Nurazhani Abdul Raof; Nathan R. Schiele; Yubing Xie; Douglas B. Chrisey; David T. Corr

The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment.


Stem Cell Research & Therapy | 2013

Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro

Zachary A. Schiller; Nathan R. Schiele; James K Sims; Kyongbum Lee; Catherine K. Kuo

IntroductionObesity, which is excessive expansion of white adipose tissue, is a major risk factor for several serious health issues, including diabetes, cardiovascular disease and cancer. Efforts to combat obesity and related diseases require understanding the basic biology of adipogenesis. However, in vitro studies do not result in lipid composition and morphology that are typically seen in vivo, likely because the in vitro conditions are not truly representative of in vivo adipose tissue formation. In vitro, low oxygen tension and cytoskeletal tension have been shown to independently regulate adipogenesis, but in vivo, these two factors simultaneously influence differentiation.MethodsThe purpose of our study was to examine the influence of physiological oxygen tension on cytoskeletal tension-mediated adipogenesis. Adipose-derived stem cells (ASCs) were differentiated under both ambient (20%) and physiological (5%) oxygen conditions and treated with cytoskeletal inhibitors, cytochalasin D or blebbistatin. Adipogenesis was assessed on the basis of gene expression and adipocyte metabolic function.ResultsAdipose tissue metabolic markers (glycerol-3-phosphate dehydrogenase (GPDH) and triglycerides) were significantly down-regulated by physiological oxygen levels. Reducing cytoskeletal tension through the use of chemical inhibitors, either cytochalasin D or blebbistatin, resulted in an up-regulation of adipogenic gene expression (peroxisome proliferator-activated receptor γ (PPARγ), lipoprotein lipase (LPL) and fatty acid binding protein 4 (FABP4)) and metabolic markers, regardless of oxygen levels. Cytochalasin D and blebbistatin treatment altered cytoskeletal organization and associated tension via different mechanisms; however, both conditions had similar effects on adipogenesis, suggesting that physiological oxygen-mediated regulation of adipogenesis in ASCs is modulated, in part, by cytoskeletal tension.ConclusionsThese results demonstrated that interactions between the cytoskeleton and oxygen tension influence adipogenic differentiation of ASCs.


Current Opinion in Biotechnology | 2013

Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis

Nathan R. Schiele; Joseph E. Marturano; Catherine K. Kuo

Tendons are connective tissues required for motion and are frequently injured. Poor healing and inadequate return to normal tissue structure and mechanical function make tendon a prime candidate for tissue engineering; however functional tendons have yet to be engineered. The physical environment, from substrate stiffness to dynamic mechanical loading, may regulate tenogenic stem cell differentiation. Tissue stiffness and loading parameters derived from embryonic development may enhance tenogenic stem cell differentiation and tendon tissue formation. We highlight the current understanding of the mechanical environment experienced by embryonic tendons and how progenitor cells may sense and respond to physical inputs. We further discuss how mechanical factors have only recently been used to induce tenogenic fate in stem cells.


Biofabrication | 2012

Laser direct-write of single microbeads into spatially-ordered patterns

Theresa B. Phamduy; Nurazhani Abdul Raof; Nathan R. Schiele; Zijie Yan; David T. Corr; Yong Huang; Yubing Xie; Douglas B. Chrisey

Fabrication of heterogeneous microbead patterns on a bead-by-bead basis promotes new opportunities for sensors, lab-on-a-chip technology and cell-culturing systems within the context of customizable constructs. Laser direct-write (LDW) was utilized to target and deposit solid polystyrene and stem cell-laden alginate hydrogel beads into computer-programmed patterns. We successfully demonstrated single-bead printing resolution and fabricated spatially-ordered patterns of microbeads. The probability of successful microbead transfer from the ribbon surface increased from 0 to 80% with decreasing diameter of 600 to 45 µm, respectively. Direct-written microbeads retained spatial pattern registry, even after 10 min of ultrasonication treatment. SEM imaging confirmed immobilization of microbeads. Viability of cells encapsulated in transferred hydrogel microbeads achieved 37 ± 11% immediately after the transfer process, whereas randomly-patterned pipetted control beads achieved a viability of 51 ± 25%. Individual placement of >10 µm diameter microbeads onto planar surfaces has previously been unattainable. We have demonstrated LDW as a valuable tool for the patterning of single, micrometer-diameter beads into spatially-ordered patterns.


Stem Cell Research & Therapy | 2015

Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors

Jeffrey P. Brown; Thomas V. Galassi; Matteo Stoppato; Nathan R. Schiele; Catherine K. Kuo

IntroductionAdvances in tendon engineering with mesenchymal stem cells (MSCs) are hindered by a need for cues to direct tenogenesis, and markers to assess tenogenic state. We examined the effects of factors involved in embryonic tendon development on adult MSCs, and compared MSC responses to that of embryonic tendon progenitor cells (TPCs), a model system of tenogenically differentiating cells.MethodsMurine MSCs and TPCs subjected to cyclic tensile loading, transforming growth factor-β2 (TGFβ2), and fibroblast growth factor-4 (FGF4) in vitro were assessed for proliferation and mRNA levels of scleraxis, TGFβ2, tenomodulin, collagen type I and elastin.ResultsBefore treatment, scleraxis and elastin levels in MSCs were lower than in TPCs, while other tendon markers expressed at similar levels in MSCs as TPCs. TGFβ2 alone and combined with loading were tenogenic based on increased scleraxis levels in both MSCs and TPCs. Loading alone had minimal effect. FGF4 downregulated tendon marker levels in MSCs but not in TPCs. Select tendon markers were not consistently upregulated with scleraxis, demonstrating the importance of characterizing a profile of markers.ConclusionsSimilar responses as TPCs to specific treatments suggest MSCs have tenogenic potential. Potentially shared mechanisms of cell function between MSCs and TPCs should be investigated in longer term studies.


Journal of Biomechanics | 2014

Informing tendon tissue engineering with embryonic development

Zachary Glass; Nathan R. Schiele; Catherine K. Kuo

Tendon is a strong connective tissue that transduces muscle-generated forces into skeletal motion. In fulfilling this role, tendons are subjected to repeated mechanical loading and high stress, which may result in injury. Tissue engineering with stem cells offers the potential to replace injured/damaged tissue with healthy, new living tissue. Critical to tendon tissue engineering is the induction and guidance of stem cells towards the tendon phenotype. Typical strategies have relied on adult tissue homeostatic and healing factors to influence stem cell differentiation, but have yet to achieve tissue regeneration. A novel paradigm is to use embryonic developmental factors as cues to promote tendon regeneration. Embryonic tendon progenitor cell differentiation in vivo is regulated by a combination of mechanical and chemical factors. We propose that these cues will guide stem cells to recapitulate critical aspects of tenogenesis and effectively direct the cells to differentiate and regenerate new tendon. Here, we review recent efforts to identify mechanical and chemical factors of embryonic tendon development to guide stem/progenitor cell differentiation toward new tendon formation, and discuss the role this work may have in the future of tendon tissue engineering.


Journal of Orthopaedic Research | 2015

Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development

Nathan R. Schiele; Friedrich von Flotow; Zachary L. Tochka; Laura A. Hockaday; Joseph E. Marturano; Jeffrey J. Thibodeau; Catherine K. Kuo

Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties.


Journal of Biomechanics | 2016

Embryonically inspired scaffolds regulate tenogenically differentiating cells

Joseph E. Marturano; Nathan R. Schiele; Zachary A. Schiller; Thomas V. Galassi; Matteo Stoppato; Catherine K. Kuo

Tendon injuries heal as scar tissue with significant dysfunction and propensity to re-injure, motivating efforts to develop stem cell-based therapies for tendon regeneration. For these therapies to succeed, effective cues to guide tenogenesis are needed. Our aim is to identify these cues within the embryonic tendon microenvironment. We recently demonstrated embryonic tendon elastic modulus increases during development and is substantially lower than in adult. Here, we examined how these embryonic mechanical properties influence tenogenically differentiating cells, by culturing embryonic tendon progenitor cells (TPCs) within alginate gel scaffolds fabricated with embryonic tendon mechanical properties. We showed that nano- and microscale moduli of RGD-functionalized alginate gels can be tailored to that of embryonic tendons by adjusting polymer concentration and crosslink density. These gels differentially regulated morphology of encapsulated TPCs as a function of initial elastic modulus. Additionally, higher initial elastic moduli elicited higher mRNA levels of scleraxis and collagen type XII but lower levels of collagen type I, whereas late tendon markers tenomodulin and collagen type III were unaffected. Our results demonstrate the potential to engineer scaffolds with embryonic mechanical properties and to use these scaffolds to regulate the behavior of tenogenically differentiating cells.


Tissue Engineering Part A | 2013

Engineering Cellular Fibers for Musculoskeletal Soft Tissues Using Directed Self-Assembly

Nathan R. Schiele; Ryan A. Koppes; Douglas B. Chrisey; David T. Corr

Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.

Collaboration


Dive into the Nathan R. Schiele's collaboration.

Top Co-Authors

Avatar

David T. Corr

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yubing Xie

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Nurazhani Abdul Raof

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Ryan A. Koppes

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Dias

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge