Nathan S. Hall
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan S. Hall.
Science of The Total Environment | 2011
Hans W. Paerl; Nathan S. Hall; Elizabeth S. Calandrino
Harmful (toxic, food web altering, hypoxia generating) cyanobacterial algal blooms (CyanoHABs) are proliferating world-wide due to anthropogenic nutrient enrichment, and they represent a serious threat to the use and sustainability of our freshwater resources. Traditionally, phosphorus (P) input reductions have been prescribed to control CyanoHABs, because P limitation is widespread and some CyanoHABs can fix atmospheric nitrogen (N(2)) to satisfy their nitrogen (N) requirements. However, eutrophying systems are increasingly plagued with non N(2) fixing CyanoHABs that are N and P co-limited or even N limited. In many of these systems N loads are increasing faster than P loads. Therefore N and P input constraints are likely needed for long-term CyanoHAB control in such systems. Climatic changes, specifically warming, increased vertical stratification, salinization, and intensification of storms and droughts play additional, interactive roles in modulating CyanoHAB frequency, intensity, geographic distribution and duration. In addition to having to consider reductions in N and P inputs, water quality managers are in dire need of effective tools to break the synergy between nutrient loading and hydrologic regimes made more favorable for CyanoHABs by climate change. The more promising of these tools make affected waters less hospitable for CyanoHABs by 1) altering the hydrology to enhance vertical mixing and/or flushing and 2) decreasing nutrient fluxes from organic rich sediments by physically removing the sediments or capping sediments with clay. Effective future CyanoHAB management approaches must incorporate both N and P loading dynamics within the context of altered thermal and hydrologic regimes associated with climate change.
Estuaries and Coasts | 2014
Hans W. Paerl; Nathan S. Hall; Benjamin L. Peierls; Karen L. Rossignol
Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.
PLOS ONE | 2014
Hans W. Paerl; Hai Xu; Nathan S. Hall; Guangwei Zhu; Boqiang Qin; Yali Wu; Karen L. Rossignol; Linghan Dong; Mark J. McCarthy; Alan R. Joyner
Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.
Journal of Freshwater Ecology | 2015
Hans W. Paerl; Hai Xu; Nathan S. Hall; Karen L. Rossignol; Alan R. Joyner; Guangwei Zhu; Boqiang Qin
Rapidly increasing urban, agricultural, and industrial growth in the Taihu basin during the past four decades has led to accelerated nitrogen (N) and phosphorus (P) loading to the lake. This has caused the lake to shift from oligo-mesotrophic to hypertrophic conditions, symptomized by toxic cyanobacterial blooms, dominated by the non-N2 fixing genus Microcystis. From 2008 to 2013, a series of in situ microcosm and mesocosm nutrient addition bioassays were conducted that were focused on the heavily polluted northern region (i.e., Meiliang Bay) and other lake locations. Bioassays showed that phytoplankton production, as chlorophyll a and photopigments diagnostic of major phytoplankton groups, was controlled by P inputs from spring to early summer, while N played a more dominant controlling role in summer–fall. In most cases, combined N and P additions promoted maximum growth. This pattern proved true for both the highly eutrophic northern region and the less-eutrophic central and southern regions. Cyanobacteria, chlorophytes, and cryptophytes all showed the strongest positive responses to N and N+P enrichment during the summer bloom period, while diatoms were the least abundant then and just moderately stimulated by nutrient additions. Cyanobacteria failed to selectively respond to P inputs during the summer bloom period, contradicting the paradigm that selective P enrichment will favor them, especially the N2-fixing genera. Rather, Microcystis-dominated blooms remained N-limited during summer months and were not replaced by N2-fixing genera, indicating that internal N and P regeneration of previously loaded nutrients must be sustaining blooms. Successful ‘de-eutrophication’ of Taihu will require reductions of both N and P inputs in all lake regions in order to control blooms and counter the legacy of several decades of nutrient over-enrichment.
Environmental Science & Technology | 2009
Hans W. Paerl; Karen L. Rossignol; R. Guajardo; Nathan S. Hall; Alan R. Joyner; Benjamin L. Peierls; J. Ramus
Ships of opportunity afford ready study of marine environments so as to understand how they change.
The ISME Journal | 2017
Weida Gong; Jamie Browne; Nathan S. Hall; David M. Schruth; Hans W. Paerl; Adrian Marchetti
In coastal waters worldwide, an increase in frequency and intensity of algal blooms has been attributed to eutrophication, with further increases predicted because of climate change. Yet, the cellular-level changes that occur in blooming algae remain largely unknown. Comparative metatranscriptomics was used to investigate the underlying molecular mechanisms associated with a dinoflagellate bloom in a eutrophied estuary. Here we show that under bloom conditions, there is increased expression of metabolic pathways indicative of rapidly growing cells, including energy production, carbon metabolism, transporters and synthesis of cellular membrane components. In addition, there is a prominence of highly expressed genes involved in the synthesis of membrane-associated molecules, including those for the production of glycosaminoglycans (GAGs), which may serve roles in nutrient acquisition and/or cell surface adhesion. Biotin and thiamine synthesis genes also increased expression along with several cobalamin biosynthesis-associated genes, suggesting processing of B12 intermediates by dinoflagellates. The patterns in gene expression observed are consistent with bloom-forming dinoflagellates eliciting a cellular response to elevated nutrient demands and to promote interactions with their surrounding bacterial consortia, possibly in an effort to cultivate for enhancement of vitamin and nutrient exchanges and/or direct consumption. Our findings provide potential molecular targets for bloom characterization and management efforts.
Harmful Algae | 2018
Nathan S. Hall; R. Wayne Litaker; W. Judson Kenworthy; Mark W. Vandersea; William G. Sunda; James P. Reid; Daniel H. Slone; Susan M. Butler
A brown tide bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml-1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown tide bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown tide development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35-36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown tide, and ciliate abundance was high compared to other systems not impacted by brown tide. Preferential grazing by zooplankton on non-brown tide species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown tide bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the short-lived duration of the brown tide bloom in Guantánamo Bay.
Estuarine Coastal and Shelf Science | 2004
Michael F. Piehler; L. Twomey; Nathan S. Hall; Hans W. Paerl
Marine Ecology Progress Series | 2003
Pia H. Moisander; Timothy F. Steppe; Nathan S. Hall; Jorma Kuparinen; Hans W. Paerl
Environmental Science & Technology | 2015
Hui-Juan Xu; Hans W. Paerl; Boqiang Qin; Guangwei Zhu; Nathan S. Hall; Yunfei Wu