Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan Sandbo is active.

Publication


Featured researches published by Nathan Sandbo.


Circulation | 2005

Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest.

Benjamin S. Abella; Nathan Sandbo; Peter Vassilatos; Jason P. Alvarado; Nicholas O’Hearn; Herbert N Wigder; Paul Hoffman; Kathleen Tynus; Terry L. Vanden Hoek; Lance B. Becker

Background—Recent data highlight a vital link between well-performed cardiopulmonary resuscitation (CPR) and survival after cardiac arrest; however, the quality of CPR as actually performed by trained healthcare providers is largely unknown. We sought to measure in-hospital chest compression rates and to determine compliance with published international guidelines. Methods and Results—We developed and validated a handheld recording device to measure chest compression rate as a surrogate for CPR quality. A prospective observational study of adult cardiac arrests was performed at 3 hospitals from April 2002 to October 2003. Resuscitations were witnessed by trained observers using a customized personal digital assistant programmed to store the exact time of each chest compression, allowing offline calculation of compression rates at serial time points. In 97 arrests, data from 813 minutes during which chest compressions were delivered were analyzed in 30-second time segments. In 36.9% of the total number of segments, compression rates were <80 compressions per minute (cpm), and 21.7% had rates <70 cpm. Higher chest compression rates were significantly correlated with initial return of spontaneous circulation (mean chest compression rates for initial survivors and nonsurvivors, 90±17 and 79±18 cpm, respectively; P=0.0033). Conclusions—In-hospital chest compression rates were below published resuscitation recommendations, and suboptimal compression rates in our study correlated with poor return of spontaneous circulation. CPR quality is likely a critical determinant of survival after cardiac arrest, suggesting the need for routine measurement, monitoring, and feedback systems during actual resuscitation.


Journal of Biological Chemistry | 2006

Phosphorylation of β-Catenin by Cyclic AMP-dependent Protein Kinase

Sebastien Taurin; Nathan Sandbo; Yimin Qin; Nickolai O. Dulin

β-Catenin is a signaling molecule that promotes cell proliferation by the induction of gene transcription through the activation of T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors. The canonical mechanism of the regulation of β-catenin involves its phosphorylation by casein kinase 1 at the Ser-45 site and by glycogen synthase kinase 3 (GSK3) at the Thr-41, Ser-37, and Ser-33 sites. This phosphorylation targets β-catenin to ubiquitination and degradation by the proteasome system. Mitogenic factors promote β-catenin signaling through the inhibition of GSK3, resulting in reduced β-catenin phosphorylation, its stabilization, and subsequent accumulation in the nucleus, where it stimulates TCF/LEF-dependent gene transcription. In the present study, we have shown that (i) β-catenin can be phosphorylated by protein kinase A (PKA) in vitro and in intact cells at two novel sites, Ser-552 and Ser-675; (ii) phosphorylation by PKA promotes the transcriptional activity (TCF/LEF transactivation) ofβ-catenin; (iii) mutation of Ser-675 attenuates the promoting effect of PKA; (iv) phosphorylation by PKA does not affect the GSK3-dependent phosphorylation ofβ-catenin, its stability, or intracellular localization; and (v) phosphorylation at the Ser-675 site promotes the binding of β-catenin to its transcriptional coactivator, CREB-binding protein. In conclusion, this study identifies a novel, noncanonical mechanism of modulation of β-catenin signaling through direct phosphorylation of β-catenin by PKA, promoting its interaction with CREB-binding protein.


American Journal of Respiratory Cell and Molecular Biology | 2009

Critical Role of Serum Response Factor in Pulmonary Myofibroblast Differentiation Induced by TGF-β

Nathan Sandbo; Steven Kregel; Sebastien Taurin; Sangeeta Bhorade; Nickolai O. Dulin

Transforming growth factor-beta (TGF-beta) is a cytokine implicated in wound healing and in the pathogenesis of pulmonary fibrosis. TGF-beta stimulates myofibroblast differentiation characterized by expression of contractile smooth muscle (SM)-specific proteins such as SM-alpha-actin. In the present study, we examined the role of serum response factor (SRF) in the mechanism of TGF-beta-induced pulmonary myofibroblast differentiation of human lung fibroblasts (HLF). TGF-beta stimulated SM-alpha-actin expression in HLF, which paralleled with a profound induction of SRF expression and activity. Inhibition of SRF by the pharmacologic SRF inhibitor (CCG-1423), or via adenovirus-mediated transduction of SRF short hairpin RNA (shSRF), blocked the expression of both SRF and SM-alpha-actin in response to TGF-beta without affecting Smad-mediated signaling of TGF-beta. However, forced expression of SRF on its own did not promote SM-alpha-actin expression, whereas expression of the constitutively transactivated SRF fusion protein (SRF-VP16) was sufficient to induce SM-alpha-actin expression, suggesting that both expression and transactivation of SRF are important. Activation of protein kinase A (PKA) by forskolin or iloprost resulted in a significant inhibition of SM-alpha-actin expression induced by TGF-beta, and this was associated with inhibition of both SRF expression and activity, but not of Smad-mediated gene transcription. In summary, this is the first direct demonstration that TGF-beta-induced pulmonary myofibroblast differentiation is mediated by SRF, and that inhibition of myofibroblast differentiation by PKA occurs through down-regulation of SRF expression levels and SRF activity, independent of Smad signaling.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β.

Nathan Sandbo; Andrew Lau; Jacob Kach; Caitlyn Ngam; Douglas M. Yau; Nickolai O. Dulin

Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-β-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-β as it relates to pulmonary myofibroblast differentiation. TGF-β stimulated a profound, but delayed (18-24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-β-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-β. TGF-β promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-β also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-β that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.


Translational Research | 2011

Actin cytoskeleton in myofibroblast differentiation: Ultrastructure defining form and driving function

Nathan Sandbo; Nickolai O. Dulin

Myofibroblasts are modified fibroblasts characterized by the presence of a well-developed contractile apparatus and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury; these cells are found also in aberrant tissue remodeling in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. Actin stress fibers are discussed as a defining ultrastructural and morphologic feature and well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization are presented. Finally, more recent observations are reviewed, demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, as well as the localized regulation of messenger RNA (mRNA) translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis.


American Journal of Physiology-cell Physiology | 2008

Phosphorylation of β-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells

Sebastien Taurin; Nathan Sandbo; Douglas M. Yau; Nan Sethakorn; Nickolai O. Dulin

Extracellular ATP stimulates proliferation of vascular smooth muscle cells (VSMC) through activation of G protein-coupled P2Y purinergic receptors. We have previously shown that ATP stimulates a transient activation of protein kinase A (PKA), which, together with the established mitogenic signaling of purinergic receptors, promotes proliferation of VSMC (Hogarth DK, Sandbo N, Taurin S, Kolenko V, Miano JM, Dulin NO. Am J Physiol Cell Physiol 287: C449-C456, 2004). We also have shown that PKA can phosphorylate beta-catenin at two novel sites (Ser552 and Ser675) in vitro and in overexpression cell models (Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. J Biol Chem 281: 9971-9976, 2006). beta-Catenin promotes cell proliferation by activation of a family of T-cell factor (TCF) transcription factors, which drive the transcription of genes implicated in cell cycle progression including cyclin D1. In the present study, using the phosphospecific antibodies against phospho-Ser552 or phospho-Ser675 sites of beta-catenin, we show that ATP can stimulate PKA-dependent phosphorylation of endogenous beta-catenin at both of these sites without affecting its expression levels in VSMC. This translates to a PKA-dependent stimulation of TCF transcriptional activity through an increased association of phosphorylated (by PKA) beta-catenin with TCF-4. Using the PKA inhibitor PKI or dominant negative TCF-4 mutant, we show that ATP-induced cyclin D1 promoter activation, cyclin D1 protein expression, and proliferation of VSMC are all dependent on PKA and TCF activities. In conclusion, we show a novel mode of regulation of endogenous beta-catenin through its phosphorylation by PKA, and we demonstrate the importance of this mechanism for ATP-induced proliferation of VSMC.


Journal of Biological Chemistry | 2007

Gβγ-mediated Prostacyclin Production and cAMP-dependent Protein Kinase Activation by Endothelin-1 Promotes Vascular Smooth Muscle Cell Hypertrophy through Inhibition of Glycogen Synthase Kinase-3

Sebastien Taurin; Kyle Hogarth; Nathan Sandbo; Douglas M. Yau; Nickolai O. Dulin

Endothelin-1 (ET1) is a vasoactive peptide that stimulates hypertrophy of vascular smooth muscle cells (VSMC) through diverse signaling pathways mediated by Gq/Gi/G13 heterotrimeric G proteins. We have found that ET1 stimulates the activity of cAMP-dependent protein kinase (PKA) in VSMC as profoundly as the Gs-linked β-adrenergic agonist, isoproterenol (ISO), but in a transient manner. PKA activation by ET1 was mediated by type-A ET1 receptors (ETA) and recruited an autocrine signaling mechanism distinct from that of ISO, involving Gi-coupled βγ subunits of heterotrimeric G proteins, extracellular signal-regulated kinases ERK1/2, cyclooxygenase COX-1 (but not COX-2) and prostacyclin receptors. In the functional studies, inhibition of PKA or COX-1 attenuated ET1-induced VSMC hypertrophy, suggesting the positive role of PKA in this response to ET1. Furthermore, we found that ET1 stimulates a Gβγ-mediated, PKA-dependent phosphorylation and inactivation of glycogen synthase kinase-3 (GSK3), an enzyme that regulates cell growth. Together, this study describes that (i) PKA can be transiently activated by Gi-coupled agonists such as ET1 by an autocrine mechanism involving Gβγ/calcium/ERK/COX-1/prostacyclin signaling, and (ii) this PKA activation promotes VSMC hypertrophy, at least in part, through PKA-dependent phosphorylation and inhibition of GSK3.


Journal of Biological Chemistry | 2013

Control of Myofibroblast Differentiation by Microtubule Dynamics through a Regulated Localization of mDia2

Nathan Sandbo; Caitlyn Ngam; Elizabeth E. Torr; Steve Kregel; Jacob Kach; Nickolai O. Dulin

Background: Myofibroblast differentiation plays a critical role in fibrosis. Results: Microtubule polymerization state inversely controls myofibroblast differentiation via Rho/SRF signaling. Dynamic localization of mDia2 to actin stress fibers is critical for myofibroblast differentiation and is regulated by the microtubule polymerization state. Conclusion: Microtubule polymerization state controls myofibroblast differentiation via regulation of mDia2 localization. Significance: This is a novel mechanism of myofibroblast differentiation and a therapeutic target. Myofibroblast differentiation plays a critical role in wound healing and in the pathogenesis of fibrosis. We have previously shown that myofibroblast differentiation is mediated by the activity of serum response factor (SRF), which is tightly controlled by the actin polymerization state. In this study, we investigated the role of the microtubule cytoskeleton in modulating myofibroblast phenotype. Treatment of human lung fibroblasts with the microtubule-destabilizing agent, colchicine, resulted in a formation of numerous stress fibers and expression of myofibroblast differentiation marker proteins. These effects of colchicine were independent of Smad signaling but were mediated by Rho signaling and SRF, as they were attenuated by the Rho kinase inhibitor, Y27632, or by the SRF inhibitor, CCG-1423. TGF-β-induced myofibroblast differentiation was not accompanied by gross changes in the microtubule polymerization state. However, microtubule stabilization by paclitaxel attenuated TGF-β-induced myofibroblast differentiation. Paclitaxel had no effect on TGF-β-induced Smad activation and Smad-dependent gene transcription but inhibited actin polymerization, nuclear accumulation of megakaryoblastic leukemia-1 protein, and SRF activation. The microtubule-associated formin, mDIA2, localized to actin stress fibers upon treatment with TGF-β, and paclitaxel prevented this localization. Treatment with the formin inhibitor, SMI formin homology 2 domain, inhibited stress fiber formation and myofibroblast differentiation induced by TGF-β, without affecting Smad-phosphorylation or microtubule polymerization. Together, these data suggest that (a) TGF-β promotes association of mDia2 with actin stress fibers, which further drives stress fiber formation and myofibroblast differentiation, and (b) microtubule polymerization state controls myofibroblast differentiation through the regulation of mDia2 localization.


Journal of Biological Chemistry | 2009

Phosphorylation of Myocardin by Extracellular Signal-regulated Kinase

Sebastien Taurin; Nathan Sandbo; Douglas M. Yau; Nan Sethakorn; Jacob Kach; Nickolai O. Dulin

The contractile phenotype of smooth muscle (SM) cells is controlled by serum response factor (SRF), which drives the expression of SM-specific genes including SM α-actin, SM22, and others. Myocardin is a cardiac and SM-restricted coactivator of SRF that is necessary for SM gene transcription. Growth factors inducing proliferation of SM cells inhibit SM gene transcription, in a manner dependent on the activation of extracellular signal-regulated kinases ERK1/2. In this study, we found that ERK1/2 phosphorylates mouse myocardin (isoform B) at four sites (Ser812, Ser859, Ser866, and Thr893), all of which are located within the transactivation domain of myocardin. The single mutation of each site either to alanine or to aspartate has no effect on the ability of myocardin to activate SRF. However, the phosphomimetic mutation of all four sites to aspartate (4×D) significantly impairs activation of SRF by myocardin, whereas the phosphodeficient mutation of all four sites to alanine (4×A) has no effect. This translates to a reduced ability of the 4×D (but not of 4×A) mutant of myocardin to stimulate expression of SM α-actin and SM22, as assessed by corresponding promoter, mRNA, or protein assays. Furthermore, we found that phosphorylation of myocardin at these sites impairs its interaction with acetyltransferase, cAMP response element-binding protein-binding protein, which is known to promote the transcriptional activity of myocardin. In conclusion, we describe a novel mode of modulation of SM gene transcription by ERK1/2 through a direct phosphorylation of myocardin.


Clinical Immunology | 2014

Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines

Stephane Esnault; Elizabeth A. Kelly; Mats W. Johansson; Lin Ying Liu; Shih Tsung Han; Moneeb Akhtar; Nathan Sandbo; Deane F. Mosher; Loren C. Denlinger; Sameer K. Mathur; James S. Malter; Nizar N. Jarjour

Semaphorin 7A (sema7a) plays a major role in TGF-β1-induced lung fibrosis. Based on the accumulating evidence that eosinophils contribute to fibrosis/remodeling in the airway, we hypothesized that airway eosinophils may be a significant source of sema7a. In vivo, sema7a was expressed on the surface of circulating eosinophils and upregulated on bronchoalveolar lavage eosinophils obtained after segmental bronchoprovocation with allergen. Based on mRNA levels in unfractionated and isolated bronchoalveolar cells, eosinophils are the predominant source of sema7a. In vitro, among the members of the IL-5-family cytokines, sema7a protein on the surface of blood eosinophils was increased more by IL-3 than by GM-CSF or IL-5. Cytokine-induced expression of cell surface sema7a required translation of newly synthesized protein. Finally, a recombinant sema7a induced alpha-smooth muscle actin production in human bronchial fibroblasts. semaphorin 7A is a potentially important modulator of eosinophil profibrotic functions in the airway remodeling of patients with chronic asthma.

Collaboration


Dive into the Nathan Sandbo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas M. Yau

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ksenija Bernau

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Caitlyn Ngam

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Elizabeth E. Torr

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge