Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan V. Matusheski is active.

Publication


Featured researches published by Nathan V. Matusheski.


British Journal of Nutrition | 2011

Dietary factors and low-grade inflammation in relation to overweight and obesity

Philip C. Calder; Namanjeet Ahluwalia; Fred Brouns; Timo Buetler; Karine Clément; Karen Cunningham; Katherine Esposito; Lena S. Jönsson; Hubert Kolb; Mirian Lansink; Ascensión Marcos; Andrew N. Margioris; Nathan V. Matusheski; Herve Nordmann; John O'Brien; Giuseppe Pugliese; Salwa Rizkalla; Casper G. Schalkwijk; Jaakko Tuomilehto; Julia Wärnberg; Bernhard Watzl; Brigitte M. Winklhofer-Roob

Low-grade inflammation is a characteristic of the obese state, and adipose tissue releases many inflammatory mediators. The source of these mediators within adipose tissue is not clear, but infiltrating macrophages seem to be especially important, although adipocytes themselves play a role. Obese people have higher circulating concentrations of many inflammatory markers than lean people do, and these are believed to play a role in causing insulin resistance and other metabolic disturbances. Blood concentrations of inflammatory markers are lowered following weight loss. In the hours following the consumption of a meal, there is an elevation in the concentrations of inflammatory mediators in the bloodstream, which is exaggerated in obese subjects and in type 2 diabetics. Both high-glucose and high-fat meals may induce postprandial inflammation, and this is exaggerated by a high meal content of advanced glycation end products (AGE) and partly ablated by inclusion of certain antioxidants or antioxidant-containing foods within the meal. Healthy eating patterns are associated with lower circulating concentrations of inflammatory markers. Among the components of a healthy diet, whole grains, vegetables and fruits, and fish are all associated with lower inflammation. AGE are associated with enhanced oxidative stress and inflammation. SFA and trans-MUFA are pro-inflammatory, while PUFA, especially long-chain n-3 PUFA, are anti-inflammatory. Hyperglycaemia induces both postprandial and chronic low-grade inflammation. Vitamin C, vitamin E and carotenoids decrease the circulating concentrations of inflammatory markers. Potential mechanisms are described and research gaps, which limit our understanding of the interaction between diet and postprandial and chronic low-grade inflammation, are identified.


Journal of Food Composition and Analysis | 2003

Variation in content of bioactive components in broccoli

Elizabeth H. Jeffery; Allan F. Brown; Anne C. Kurilich; A.S. Keck; Nathan V. Matusheski; Barbara P. Klein; John A. Juvik

The discovery of bioactive components in foods is exciting, suggesting the possibility of improved public health through diet. Yet the content of bioactive components in plant food varies, making quality control and intake recommendations problematic. Variation in content of bioactive components in fruits and vegetables depends upon both genetics and environment, including growing conditions, harvest and storage, processing and meal preparation. Cruciferous vegetables, which contain both anticarcinogenic and antioxidant properties, are excellent examples to illustrate the problem in assessing health benefits of foods that vary in content of bioactive components. In broccoli, the content of both glucosinolates and their bioactive hydrolysis products varies with genotype, environment and processing. Antioxidant vitamins and flavonoid content varies also. Here we review the influences of genetics, environment and post-harvest processing on content of bioactive components in broccoli, an area that is presently only partly understood. Reporting a range for bioactive component content can help the public to make informed choices about diet. For the future, research into the mechanisms behind this variation can lead to an understanding of genetic regulation of these variations, resulting in the generation of a consistent supply of nutritionally enhanced plant foods on the market.


Journal of Agricultural and Food Chemistry | 2009

Influence of Chocolate Matrix Composition on Cocoa Flavan-3-ol Bioaccessibility In Vitro and Bioavailability in Humans

Andrew P. Neilson; Judy George; Elsa M. Janle; Richard D. Mattes; Ralf Rudolph; Nathan V. Matusheski; Mario G. Ferruzzi

Conflicting data exist regarding the influence of chocolate matrices on the bioavailability of epicatechin (EC) from cocoa. The objective of this study was to assess the bioavailability of EC from matrices varying in macronutrient composition and physical form. EC bioavailability was assessed from chocolate confections [reference dark chocolate (CDK), high sucrose (CHS), high milk protein (CMP)] and cocoa beverages [sucrose milk protein (BSMP), non-nutritive sweetener milk protein (BNMP)], in humans and in vitro. Six subjects consumed each product in a randomized crossover design, with serum EC concentrations monitored over 6 h post consumption. Areas under the serum concentration-time curve (AUC) were similar among chocolate matrices. However, AUCs were significantly increased for BSMP and BNMP (132 and 143 nM h) versus CMP (101 nM h). Peak serum concentrations (C(MAX)) were also increased for BSMP and BNMP (43 and 42 nM) compared to CDK and CMP (32 and 25 nM). Mean T(MAX) values were lower, although not statistically different, for beverages (0.9-1.1 h) versus confections (1.8-2.3 h), reflecting distinct shapes of the pharmacokinetic curves for beverages and confections. In vitro bioaccessibility and Caco-2 accumulation did not differ between treatments. These data suggest that bioavailability of cocoa flavan-3-ols is likely similar from typical commercial cocoa based foods and beverages, but that the physical form and sucrose content may influence T(MAX) and C(MAX).


Journal of Agricultural and Food Chemistry | 2010

Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa flavan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats.

Andrew P. Neilson; Teryn N. Sapper; Elsa M. Janle; Ralf Rudolph; Nathan V. Matusheski; Mario G. Ferruzzi

The impact of carbohydrates and milk on the bioavailability of catechin (C) and epicatechin (EC) from chocolate has been previously studied. However, little data exist regarding potential modulation of the phase II metabolism by these chocolate matrix factors. The objectives of this study were to assess the impact of matrix composition on qualitative and quantitative profiles of circulating catechins and their metabolites following administration of commercially relevant chocolate confections. Sprague-Dawley rats were administered 1.5 g of a confection (reference dark, high sucrose, or milk chocolate) by intragastric gavage, and plasma samples were collected over 8 h. High-performance liquid chromatography-mass spectrometry analysis was performed to quantify C, EC, and their metabolites. The predominant metabolites were O-glucuronides (two metabolites) and O-Me-O-glucuronides (three metabolites). Plasma concentrations of metabolites were generally the highest for high sucrose treatment and lowest for milk treatment, while the reference dark treatment generally resulted in intermediate concentrations. The O-Me-(+/-)-C/EC-O-beta-glucuronide (peak 4) was significantly higher for the high sucrose treatment (2325 nM h) versus the milk treatment (1300 nM h). Additionally, C(MAX) values for (+/-)-C/EC-O-beta-glucuronide (peak 3) and two O-Me-(+/-)-C/EC-O-beta-glucuronides (peaks 4 and 6) were significantly higher for the high sucrose treatment (4012, 518, and 2518 nM, respectively) versus the milk treatment (2590, 240, and 1670 nM, respectively). Milk and sucrose appear to modulate both metabolism and plasma pharmacokinetics and, to a lesser extent, the overall bioavailability of catechins from chocolate confections.


Journal of Nutrition | 2017

Implications of US Nutrition Facts Label Changes on Micronutrient Density of Fortified Foods and Supplements

Michael McBurney; Sonia Hartunian-Sowa; Nathan V. Matusheski

The US FDA published new nutrition-labeling regulations in May 2016. For the first time since the implementation of the Nutrition Labeling and Education Act of 1990, the Daily Value (DV) for most vitamins will change, as will the units of measurement used in nutrition labeling for some vitamins. For some food categories, the Reference Amounts Customarily Consumed (RACCs) will increase to reflect portions commonly consumed on a single occasion. These regulatory changes are now effective, and product label changes will be mandatory beginning 26 July 2018. This commentary considers the potential impact of these regulatory changes on the vitamin and mineral contents of foods and dietary supplements. Case studies examined potential effects on food fortification and nutrient density. The updated DVs may lead to a reduction in the nutrient density of foods and dietary supplements with respect to 8 vitamins (vitamin A, thiamin, riboflavin, niacin, vitamin B-6, vitamin B-12, biotin, and pantothenic acid) and 6 minerals (zinc, selenium, copper, chromium, molybdenum, and chloride), and have mixed effects on 2 vitamins where the amount required per serving is affected by chemical structure (i.e., form) (natural vitamin E compared with synthetic vitamin E and folic acid compared with folate). Despite an increased DV for vitamin D, regulations limit food fortification. The adoption of Dietary Folate Equivalents for folate labeling may lead to reductions in the quantity of folic acid voluntarily added per RACC. Finally, because of increased RACCs in some food categories to reflect portions that people typically eat at one time, the vitamin and mineral density of these foods may be affected adversely. In totality, the United States is entering an era in which the need to monitor dietary intake patterns and nutritional status is unprecedented.


Current Developments in Nutrition | 2017

US family physicians overestimate personal omega-3 fatty acid biomarker status: Associations with fatty fish and omega-3 supplement intake

Nathan V. Matusheski; Keri Marshall; Sonia Hartunian-Sowa; Michael McBurney

Abstract Background The health benefits of ω-3 (n–3) fatty acids are well established. Only a small percentage of Americans consume the recommended amounts of fatty fish, the main dietary source of ω-3 fatty acids, and most have low ω-3 fatty acid blood concentrations. Objective We aimed to measure biomarkers of long-chain ω-3 fatty acid (EPA and DHA) status among family physicians, and determine whether having their ω-3 status tested would influence attitudes and patient recommendations. Methods Family physicians attending a medical conference (n = 340) completed an ω-3 intake survey and had a finger stick blood sample taken. ω-3 Index, percentage of ω-6 (%n–6) in highly unsaturated fatty acids (HUFAs), and EPA:arachidonic acid (AA) ratio were calculated from whole blood fatty acid profiles. Post-conference, a subsample of participants (n = 100) responded to a survey regarding attitudes and recommendations about ω-3s. Results Average age (mean ± SEM) of participants was 48.0 ± 0.7 y and 59% were women. Average ω-3 Index was 5.2% ± 0.1%, %n–6 in HUFA was 75% ± 0.4%, and EPA:AA ratio was 0.076 ± 0.004. 57% of family physicians reported consuming <2 servings/wk of fatty fish, and 78% reported using ω-3 supplements ≤1/wk. Although 51% believed ω-3 status was in a desirable range, only 5% had an ω-3 Index ≥8%. Biomarkers of ω-3 status were significantly associated with fatty fish intake and supplement use, and were correlated (R2 ranging from 0.59 to 0.77). Physicians who had ω-3 status tested (n = 65) were more likely to agree with statements affirming the health benefits of ω-3 fatty acids and more willing to recommend ω-3 fatty acids to their patients (P = 0.004). Conclusions Blood concentrations of ω-3 fatty acids in family physicians were below recommendations, and were associated with fatty fish intake and ω-3 supplement use. There was a discrepancy between perceived and actual ω-3 status. Increased awareness of personal ω-3 status among physicians may facilitate patient communication and recommendations about ω-3 fatty acid intake. This trial was registered at clinicaltrials.gov as, NCT03056898.


Phytochemistry | 2004

Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli

Nathan V. Matusheski; John A. Juvik; Elizabeth H. Jeffery


Journal of Agricultural and Food Chemistry | 2001

Comparison of the Bioactivity of Two Glucoraphanin Hydrolysis Products Found in Broccoli, Sulforaphane and Sulforaphane Nitrile

Nathan V. Matusheski; Elizabeth H. Jeffery


Journal of Agricultural and Food Chemistry | 2006

Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane.

Nathan V. Matusheski; Ranjan Swarup; John A. Juvik; Richard Mithen; Malcolm J. Bennett; Elizabeth H. Jeffery


Cancer Letters | 2006

Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion

Joell J. Gills; Elizabeth H. Jeffery; Nathan V. Matusheski; Richard C. Moon; Daniel D. Lantvit; John M. Pezzuto

Collaboration


Dive into the Nathan V. Matusheski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario G. Ferruzzi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge