Nathan W. Bartlett
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan W. Bartlett.
Nature Medicine | 2006
Simon D. Message; Vasile Laza-Stanca; Michael R. Edwards; Peter Wark; Nathan W. Bartlett; Tatiana Kebadze; Patrick Mallia; Luminita A. Stanciu; Hayley L. Parker; Louise Slater; Anita Lewis-Antes; Onn Min Kon; Stephen T. Holgate; Donna E. Davies; Sergei V. Kotenko; Alberto Papi; Sebastian L. Johnston
Rhinoviruses are the major cause of asthma exacerbations, and asthmatics have increased susceptibility to rhinovirus and risk of invasive bacterial infections. Here we show deficient induction of interferon-λs by rhinovirus in asthmatic primary bronchial epithelial cells and alveolar macrophages, which was highly correlated with severity of rhinovirus-induced asthma exacerbation and virus load in experimentally infected human volunteers. Induction by lipopolysaccharide in asthmatic macrophages was also deficient and correlated with exacerbation severity. These results identify previously unknown mechanisms of susceptibility to infection in asthma and suggest new approaches to prevention and/or treatment of asthma exacerbations.
Journal of Experimental Medicine | 2003
Mary T. Harte; Ismar R. Haga; Geraldine Maloney; Pearl Gray; Patrick C. Reading; Nathan W. Bartlett; Geoffrey L. Smith; Andrew R. Bowie; Luke A. J. O'Neill
Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor κB (NF-κB) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor–associated kinase 2 (IRAK2) and tumor necrosis factor receptor–associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.
Journal of Experimental Medicine | 2005
Julianne Stack; Ismar R. Haga; Martina Schröder; Nathan W. Bartlett; Geraldine Maloney; Patrick C. Reading; Katherine A. Fitzgerald; Geoffrey L. Smith; Andrew G. Bowie
Viral immune evasion strategies target key aspects of the host antiviral response. Recently, it has been recognized that Toll-like receptors (TLRs) have a role in innate defense against viruses. Here, we define the function of the vaccinia virus (VV) protein A46R and show it inhibits intracellular signalling by a range of TLRs. TLR signalling is triggered by homotypic interactions between the Toll-like–interleukin-1 resistance (TIR) domains of the receptors and adaptor molecules. A46R contains a TIR domain and is the only viral TIR domain–containing protein identified to date. We demonstrate that A46R targets the host TIR adaptors myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, TIR domain–containing adaptor inducing IFN-β (TRIF), and the TRIF-related adaptor molecule and thereby interferes with downstream activation of mitogen-activated protein kinases and nuclear factor κB. TRIF mediates activation of interferon (IFN) regulatory factor 3 (IRF3) and induction of IFN-β by TLR3 and TLR4 and suppresses VV replication in macrophages. Here, A46R disrupted TRIF-induced IRF3 activation and induction of the TRIF-dependent gene regulated on activation, normal T cell expressed and secreted. Furthermore, we show that A46R is functionally distinct from another described VV TLR inhibitor, A52R. Importantly, VV lacking the A46R gene was attenuated in a murine intranasal model, demonstrating the importance of A46R for VV virulence.
Nature Medicine | 2008
Nathan W. Bartlett; Ross P. Walton; Michael R. Edwards; Juliya Aniscenko; Gaetano Caramori; Jie Zhu; Nicholas Glanville; Katherine J Choy; Patrick Jourdan; Jerome Burnet; Tobias J. Tuthill; Michael S Pedrick; Michael Hurle; Chris Plumpton; Nigel A. Sharp; James N Bussell; Dallas M. Swallow; Jürgen Schwarze; Bruno Guy; Jeffrey Almond; Peter K. Jeffery; Alberto Papi; Richard A. Killington; David J. Rowlands; Edward D. Blair; Neil James Clarke; Sebastian L. Johnston
Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.
Pharmacology & Therapeutics | 2009
Michael R. Edwards; Nathan W. Bartlett; Deborah Clarke; Mark A. Birrell; Maria G. Belvisi; Sebastian L. Johnston
Abstract Asthma and chronic obstructive pulmonary disease are inflammatory lung disorders responsible for significant morbidity and mortality worldwide. While the importance of allergic responses in asthma is well known, respiratory viral and bacterial infections and pollutants especially cigarette smoke are important factors in the pathogenesis of both diseases. Corticosteroid treatment remains the first preference of treatment in either disease, however these therapies are not always completely effective, and are associated with side effects and steroid resistance. Due to such limitations, development of new treatments represents a major goal for both the pharmaceutical industry and academic researchers. There are now excellent reasons to promote NF-κB signalling intermediates and Rel family proteins as potential therapeutic targets for both asthma and chronic obstructive pulmonary disease. This notion is supported by the fact that much of the underlying inflammation of both diseases independent of stimuli, is mediated at least in part, by NF-κB mediated signalling events in several cell types. Also, a range of inhibitors of NF-κB signalling intermediates are now available, including DNA oligonucleotides and DNA-peptide molecules that act as NF-κB decoy sequences, small molecule inhibitors such as IKK-β inhibitors, and proteasome inhibitors affecting NF-κB signalling, that have either shown promise in animal models or have begun clinical trials in other disorders. This review will focus on the role of NF-κB in both diseases, will discuss its suitability as a target, and will highlight recent key studies that support the potential of NF-κB as a therapeutic target in these two important inflammatory lung diseases.
American Journal of Respiratory and Critical Care Medicine | 2014
David J. Jackson; Heidi Makrinioti; Batika M. J. Rana; Betty Shamji; Maria-Belen Trujillo-Torralbo; Joseph Footitt; Jerico del-Rosario; Aurica G. Telcian; Alexandra Nikonova; Jie Zhu; Julia Aniscenko; Leila Gogsadze; Eteri Bakhsoliani; Stephanie Traub; Jaideep Dhariwal; James D. Porter; Duncan Hunt; Toby M Hunt; Trevor Hunt; Luminita A. Stanciu; Musa Khaitov; Nathan W. Bartlett; Michael R. Edwards; Onn Min Kon; Patrick Mallia; Nikolaos G. Papadopoulos; Cezmi A. Akdis; John Westwick; Matthew J. Edwards; David J. Cousins
RATIONALE Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell-derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation. OBJECTIVES To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway. METHODS We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirus-infected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade. MEASUREMENTS AND MAIN RESULTS IL-4, IL-5, IL-13, and IL-33 are all induced by rhinovirus in the asthmatic airway in vivo and relate to exacerbation severity. Further, induction of IL-33 correlates with viral load and IL-5 and IL-13 levels. Rhinovirus infection of human primary BECs induced IL-33, and culture of human T cells and ILC2s with supernatants of rhinovirus-infected BECs strongly induced type 2 cytokines. This induction was entirely dependent on IL-33. CONCLUSIONS IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo. Virus-induced IL-33 and IL-33-responsive T cells and ILC2s are key mechanistic links between viral infection and exacerbation of asthma. IL-33 inhibition is a novel therapeutic approach for asthma exacerbations.
PLOS Pathogens | 2010
Louise Slater; Nathan W. Bartlett; Jj Haas; Jie Zhu; Simon D. Message; Ross P. Walton; Annemarie Sykes; Samer Dahdaleh; Deborah L. Clarke; Maria G. Belvisi; Onn M. Kon; Takashi Fujita; Peter K. Jeffery; Sebastian L. Johnston; Michael R. Edwards
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8–12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.
Journal of General Virology | 2007
Samantha Cooray; Mohammad W. Bahar; Nicola G. A. Abrescia; Colin E. McVey; Nathan W. Bartlett; Ron A.-J. Chen; David I. Stuart; Jonathan M. Grimes; Geoffrey L. Smith
Vaccinia virus (VACV) encodes many immunomodulatory proteins, including inhibitors of apoptosis and modulators of innate immune signalling. VACV protein N1 is an intracellular homodimer that contributes to virus virulence and was reported to inhibit nuclear factor (NF)-κB signalling. However, analysis of NF-κB signalling in cells infected with recombinant viruses with or without the N1L gene showed no difference in NF-κB-dependent gene expression. Given that N1 promotes virus virulence, other possible functions of N1 were investigated and this revealed that N1 is an inhibitor of apoptosis in cells transfected with the N1L gene and in the context of VACV infection. In support of this finding virally expressed N1 co-precipitated with endogenous pro-apoptotic Bcl-2 proteins Bid, Bad and Bax as well as with Bad and Bax expressed by transfection. In addition, the crystal structure of N1 was solved to 2.9 Å resolution (0.29 nm). Remarkably, although N1 shows no sequence similarity to cellular proteins, its three-dimensional structure closely resembles Bcl-xL and other members of the Bcl-2 protein family. The structure also reveals that N1 has a constitutively open surface groove similar to the grooves of other anti-apoptotic Bcl-2 proteins, which bind the BH3 motifs of pro-apoptotic Bcl-2 family members. Molecular modelling of BH3 peptides into the N1 surface groove, together with analysis of their physico-chemical properties, suggests a mechanism for the specificity of peptide recognition. This study illustrates the importance of the evolutionary conservation of structure, rather than sequence, in protein function and reveals a novel anti-apoptotic protein from orthopoxviruses.
Science Translational Medicine | 2014
Janine Beale; Annabelle Jayaraman; David J. Jackson; Jonathan Macintyre; Michael R. Edwards; Ross P. Walton; Jie Zhu; Yee Man Ching; Betty Shamji; Matthew J. Edwards; John Westwick; David J. Cousins; You Yi Hwang; Andrew N. J. McKenzie; Sebastian L. Johnston; Nathan W. Bartlett
IL-25 critically links rhinovirus infection and allergic asthma exacerbations. IL-25 Horns in on Asthma Attacks The common cold isn’t so common in people with asthma. Rhinoviruses—the main causes of the common cold—can make asthma attacks worse. Now, Beale et al. report that one way this happens is because rhinoviruses can induce interleukin-25 (IL-25) in lung epithelial cells. They found that IL-25 is more highly expressed in people with asthma than in healthy controls. In a mouse model of allergic asthma, rhinovirus infection induced IL-25 production, and blocking the IL-25 receptor could reduce rhinovirus-induced symptom exacerbation. These data suggest that blocking IL-25 is a promising therapeutic strategy in asthmatics, something to consider as the cold season approaches. Rhinoviruses (RVs), which are the most common cause of virally induced asthma exacerbations, account for much of the burden of asthma in terms of morbidity, mortality, and associated cost. Interleukin-25 (IL-25) activates type 2–driven inflammation and is therefore potentially important in virally induced asthma exacerbations. To investigate this, we examined whether RV-induced IL-25 could contribute to asthma exacerbations. RV-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression, which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental RV infection. In addition, in mice, RV infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type 2 cytokine expression, mucus production, and recruitment of eosinophils, neutrophils, basophils, and T and non-T type 2 cells. Therefore, asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro–type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.
Journal of General Virology | 2002
Nathan W. Bartlett; Julian A. Symons; David C. Tscharke; Geoffrey L. Smith
The vaccinia virus (VV) N1L gene encodes a protein of 14 kDa that was identified previously in the concentrated supernatant of virus-infected cells. Here we show that the protein is present predominantly (>90%) within cells rather than in the culture supernatant and it exists as a non-glycosylated, non-covalent homodimer. The N1L protein present in the culture supernatant was uncleaved at the N terminus and was released from cells more slowly than the VV A41L gene product, a secreted glycoprotein that has a conventional signal peptide. Bioinformatic analyses predict that the N1L protein is largely alpha-helical and show that it is conserved in many VV strains, in other orthopoxviruses and in members of other chordopoxvirus genera. However, database searches found no non-poxvirus proteins with significant amino acid similarity to N1L. A deletion mutant lacking the N1L gene replicated normally in cell culture, but was attenuated in intranasal and intradermal murine models compared to wild-type and revertant controls. The conservation of the N1L protein and the attenuated phenotype of the deletion mutant indicate an important role in the virus life-cycle.