Nathan W. Churchill
St. Michael's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan W. Churchill.
Cerebral Cortex | 2010
Cheryl L. Grady; Andrea B. Protzner; Natasa Kovacevic; Stephen C. Strother; Babak Afshin-Pour; Magda Wojtowicz; John A. E. Anderson; Nathan W. Churchill; Anthony R. McIntosh
We explored the effects of aging on 2 large-scale brain networks, the default mode network (DMN) and the task-positive network (TPN). During functional magnetic resonance imaging scanning, young and older participants carried out 4 visual tasks: detection, perceptual matching, attentional cueing, and working memory. Accuracy of performance was roughly matched at 80% across tasks and groups. Modulations of activity across conditions were assessed, as well as functional connectivity of both networks. Younger adults showed a broader engagement of the DMN and older adults a more extensive engagement of the TPN. Functional connectivity in the DMN was reduced in older adults, whereas the main pattern of TPN connectivity was equivalent in the 2 groups. Age-specific connectivity also was seen in TPN regions. Increased activity in TPN areas predicted worse accuracy on the tasks, but greater expression of a connectivity pattern associated with a right dorsolateral prefrontal TPN region, seen only in older adults, predicted better performance. These results provide further evidence for age-related differences in the DMN and new evidence of age differences in the TPN. Increased use of the TPN may reflect greater demand on cognitive control processes in older individuals that may be partially offset by alterations in prefrontal functional connectivity.
Human Brain Mapping | 2012
Nathan W. Churchill; Anita Oder; Hervé Abdi; Fred Tam; Wayne Lee; Christopher G. Thomas; Jon Ween; Simon J. Graham; Stephen C. Strother
Subject‐specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data‐driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three‐way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub‐optimal choices of data preprocessing steps (or “pipeline”) in a clinical task‐design, an fMRI adaptation of the widely used Trail‐Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject‐dependant effects, and that individually‐optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual‐subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. Hum Brain Mapp, 2012.
Frontiers in Aging Neuroscience | 2013
Karen L. Campbell; Omer Grigg; Cristina Saverino; Nathan W. Churchill; Cheryl L. Grady
Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.
Human Brain Mapping | 2011
Fred Tam; Nathan W. Churchill; Stephen C. Strother; Simon J. Graham
Writing and drawing are understudied with fMRI, partly for lack of a device that approximates these behaviors well while supporting task feedback and quantitative behavioral logging in the confines of the magnet. Consequently, we developed a tablet based on touchscreen technology that is accurate, reliable, relatively inexpensive, and fMRI compatible. After confirming fMRI compatibility, we conducted preliminary fMRI experiments examining the neural correlates of a widely used pen‐and‐paper neuropsychological assessment, the trail making test. In two subjects, we found left hemisphere frontal lobe activations similar to the major results of a previous group study, and we also noted individual differences mostly in the right hemisphere. These results demonstrate the utility of the new tablet for adaptations of pen‐and‐paper tests and suggest possible uses of the tablet for longitudinal, within‐subjects studies of disease or therapy. We also discuss using the tablet for several other types of tests requiring many, continuous, or two‐dimensional responses that were previously very difficult to perform during fMRI. Hum Brain Mapp, 2011.
PLOS ONE | 2012
Nathan W. Churchill; Grigori Yourganov; Anita Oder; Fred Tam; Simon J. Graham; Stephen C. Strother
A variety of preprocessing techniques are available to correct subject-dependant artifacts in fMRI, caused by head motion and physiological noise. Although it has been established that the chosen preprocessing steps (or “pipeline”) may significantly affect fMRI results, it is not well understood how preprocessing choices interact with other parts of the fMRI experimental design. In this study, we examine how two experimental factors interact with preprocessing: between-subject heterogeneity, and strength of task contrast. Two levels of cognitive contrast were examined in an fMRI adaptation of the Trail-Making Test, with data from young, healthy adults. The importance of standard preprocessing with motion correction, physiological noise correction, motion parameter regression and temporal detrending were examined for the two task contrasts. We also tested subspace estimation using Principal Component Analysis (PCA), and Independent Component Analysis (ICA). Results were obtained for Penalized Discriminant Analysis, and model performance quantified with reproducibility (R) and prediction metrics (P). Simulation methods were also used to test for potential biases from individual-subject optimization. Our results demonstrate that (1) individual pipeline optimization is not significantly more biased than fixed preprocessing. In addition, (2) when applying a fixed pipeline across all subjects, the task contrast significantly affects pipeline performance; in particular, the effects of PCA and ICA models vary with contrast, and are not by themselves optimal preprocessing steps. Also, (3) selecting the optimal pipeline for each subject improves within-subject (P,R) and between-subject overlap, with the weaker cognitive contrast being more sensitive to pipeline optimization. These results demonstrate that sensitivity of fMRI results is influenced not only by preprocessing choices, but also by interactions with other experimental design factors. This paper outlines a quantitative procedure to denoise data that would otherwise be discarded due to artifact; this is particularly relevant for weak signal contrasts in single-subject, small-sample and clinical datasets.
NeuroImage | 2014
Marc G. Berman; Bratislav Misic; Martin Buschkuehl; Ethan Kross; Patricia J. Deldin; Scott Peltier; Nathan W. Churchill; Susanne M. Jaeggi; Vasily A. Vakorin; Anthony R. McIntosh; John Jonides
Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms.
NeuroImage | 2012
Nathan W. Churchill; Grigori Yourganov; Robyn Spring; Peter Mondrup Rasmussen; Wayne Lee; Jon Ween; Stephen C. Strother
The effects of physiological noise may significantly limit the reproducibility and accuracy of BOLD fMRI. However, physiological noise evidences a complex, undersampled temporal structure and is often non-orthogonal relative to the neuronally-linked BOLD response, which presents a significant challenge for identifying and removing such artifact. This paper presents a multivariate, data-driven method for the characterization and removal of physiological noise in fMRI data, termed PHYCAA (PHYsiological correction using Canonical Autocorrelation Analysis). The method identifies high frequency, autocorrelated physiological noise sources with reproducible spatial structure, using an adaptation of Canonical Correlation Analysis performed in a split-half resampling framework. The technique is able to identify physiological effects with vascular-linked spatial structure, and an intrinsic dimensionality that is task- and subject-dependent. We also demonstrate that increasing dimensionality of such physiological noise is correlated with increasing variability in externally-measured respiratory and cardiac processes. Using PHYCAA as a denoising technique significantly improves simulated signal detection with physiological noise, and real data-driven model prediction and reproducibility, for both block and event-related task designs. This is demonstrated compared to no physiological noise correction, and to the widely used RETROICOR (Glover et al., 2000) physiological denoising algorithm, which uses externally measured cardiac and respiration signals.
NeuroImage | 2013
Nathan W. Churchill; Stephen C. Strother
The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological noise components which extend into gray matter tissue. These physiological effects may also be partially coupled with stimuli (and thus the BOLD response). To address these issues, we have developed PHYCAA+, a significantly improved version of the PHYCAA algorithm (Churchill et al., 2011) that (1) down-weights the variance of voxels in probable non-neuronal tissue, and (2) identifies the multivariate physiological noise subspace in gray matter that is linked to non-neuronal tissue. This model estimates physiological noise directly from EPI data, without requiring external measures of heartbeat and respiration, or manual selection of physiological components. The PHYCAA+ model significantly improves the prediction accuracy and reproducibility of single-subject analyses, compared to PHYCAA and a number of commonly-used physiological correction algorithms. Individual subject denoising with PHYCAA+ is independently validated by showing that it consistently increased between-subject activation overlap, and minimized false-positive signal in non gray-matter loci. The results are demonstrated for both block and fast single-event task designs, applied to standard univariate and adaptive multivariate analysis models.
PLOS Computational Biology | 2017
Krzysztof J. Gorgolewski; Fidel Alfaro-Almagro; Tibor Auer; Pierre Bellec; Mihai Capotă; M. Mallar Chakravarty; Nathan W. Churchill; Alexander L. Cohen; R. Cameron Craddock; Gabriel A. Devenyi; Anders Eklund; Oscar Esteban; Guillaume Flandin; Satrajit S. Ghosh; J. Swaroop Guntupalli; Mark Jenkinson; Anisha Keshavan; Gregory Kiar; Franziskus Liem; Pradeep Reddy Raamana; David Raffelt; Christopher Steele; Pierre-Olivier Quirion; Robert E. Smith; Stephen C. Strother; Gaël Varoquaux; Yida Wang; Tal Yarkoni; Russell A. Poldrack
The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.
NeuroImage | 2014
Grigori Yourganov; Tanya Schmah; Nathan W. Churchill; Marc G. Berman; Cheryl L. Grady; Stephen C. Strother
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI.