Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan West is active.

Publication


Featured researches published by Nathan West.


Nature | 2010

Selective inhibition of BET bromodomains

Panagis Filippakopoulos; Jun Qi; Sarah Picaud; Yao Shen; William B. Smith; Oleg Fedorov; Elizabeth Morse; Tracey Keates; Tyler Hickman; I. Felletar; Martin Philpott; Shonagh Munro; Michael R. McKeown; Yuchuan Wang; Amanda L. Christie; Nathan West; Michael J. Cameron; Brian S. Schwartz; Tom D. Heightman; Nicholas B. La Thangue; Christopher A. French; Olaf Wiest; Andrew L. Kung; Stefan Knapp; James E. Bradner

Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic ‘writers’ and ‘erasers’. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein–protein interactions of epigenetic ‘readers’, and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia

Akinori Yoda; Yuka Yoda; Sabina Chiaretti; Michal Bar-Natan; Kartik Mani; Scott J. Rodig; Nathan West; Yun Xiao; Jennifer R. Brown; Constantine S. Mitsiades; Martin Sattler; Jeffrey L. Kutok; Daniel J. DeAngelo; Martha Wadleigh; Alfonso Piciocchi; Paola Dal Cin; James E. Bradner; James D. Griffin; Kenneth C. Anderson; Richard Stone; Jerome Ritz; Robin Foà; David A. Frank; David M. Weinstock

The prognosis for adults with precursor B-cell acute lymphoblastic leukemia (B-ALL) remains poor, in part from a lack of therapeutic targets. We identified the type I cytokine receptor subunit CRLF2 in a functional screen for B-ALL–derived mRNA transcripts that can substitute for IL3 signaling. We demonstrate that CRLF2 is overexpressed in approximately 15% of adult and high-risk pediatric B-ALL that lack MLL, TCF3, TEL, and BCR/ABL rearrangements, but not in B-ALL with these rearrangements or other lymphoid malignancies. CRLF2 overexpression can result from translocation with the IGH locus or intrachromosomal deletion and is associated with poor outcome. CRLF2 overexpressing B-ALLs share a transcriptional signature that significantly overlaps with a BCR/ABL signature, and is enriched for genes involved in cytokine receptor and JAK-STAT signaling. In a subset of cases, CRLF2 harbors a Phe232Cys gain-of-function mutation that promotes constitutive dimerization and cytokine independent growth. A mutually exclusive subset harbors activating mutations in JAK2. In fact, all 22 B-ALLs with mutant JAK2 that we analyzed overexpress CRLF2, distinguishing CRLF2 as the key scaffold for mutant JAK2 signaling in B-ALL. Expression of WT CRLF2 with mutant JAK2 also promotes cytokine independent growth that, unlike CRLF2 Phe232Cys or ligand-induced signaling by WT CRLF2, is accompanied by JAK2 phosphorylation. Finally, cells dependent on CRLF2 signaling are sensitive to small molecule inhibitors of either JAKs or protein kinase C family kinases. Together, these findings implicate CRLF2 as an important factor in B-ALL with diagnostic, prognostic, and therapeutic implications.


Journal of Clinical Investigation | 2010

HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans

Sachie Marubayashi; Priya Koppikar; Tony Taldone; Omar Abdel-Wahab; Nathan West; Neha Bhagwat; Eloisi Caldas-Lopes; Kenneth N. Ross; Mithat Gonen; Alex Gozman; James H. Ahn; Anna Rodina; Ouathek Ouerfelli; Guangbin Yang; Cyrus V. Hedvat; James E. Bradner; Gabriela Chiosis; Ross L. Levine

JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse models of the MPN polycythemia vera (PV) and essential thrombocytosis (ET) by disrupting JAK2 protein stability. JAK2 physically associated with both HSP90 and PU-H71 and was degraded by PU-H71 treatment in vitro and in vivo, demonstrating that JAK2 is an HSP90 chaperone client. PU-H71 treatment caused potent, dose-dependent inhibition of cell growth and signaling in JAK2 mutant cell lines and in primary MPN patient samples. PU-H71 treatment of mice resulted in JAK2 degradation, inhibition of JAK-STAT signaling, normalization of peripheral blood counts, and improved survival in MPN models at doses that did not degrade JAK2 in normal tissues or cause substantial toxicity. Importantly, PU-H71 treatment also reduced the mutant allele burden in mice. These data establish what we believe to be a novel therapeutic rationale for HSP90 inhibition in the treatment of JAK2-dependent MPN.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease

James E. Bradner; Raymond H. Mak; Shyam K. Tanguturi; Ralph Mazitschek; Stephen J. Haggarty; Kenneth N. Ross; Cindy Y. Chang; Jocelyn Bosco; Nathan West; Elizabeth Morse; Katherine I. Lin; John P. Shen; Nicholas Kwiatkowski; Nele Gheldof; Job Dekker; Daniel J. DeAngelo; Steven A. Carr; Stuart L. Schreiber; Todd R. Golub; Benjamin L. Ebert

The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease.


Journal of the American Chemical Society | 2008

Total synthesis and biological mode of action of largazole: A potent class I histone deacetylase inhibitor

Albert A. Bowers; Nathan West; Jack Taunton; Stuart L. Schreiber; James E. Bradner; Robert M. Williams

The efficient total synthesis of the recently described natural substance largazole (1) and its active metabolite largazole thiol (2) is described. The synthesis required eight linear steps and proceeded in 37% overall yield. It is demonstrated that largazole is a pro-drug that is activated by removal of the octanoyl residue from the 3-hydroxy-7-mercaptohept-4-enoic acid moiety to generate the active metabolite 2, which is an extraordinarily potent Class I histone deacetylase inhibitor. Synthetic largazole and 2 have been evaluated side-by-side with FK228 and SAHA for inhibition of HDACs 1, 2, 3, and 6. Largazole and largazole thiol were further assayed for cytotoxic activity against a panel of chemoresistant melanoma cell lines, and it was found that largazole is substantially more cytotoxic than largazole thiol; this difference is attributed to differences in the cell permeability of the two substances.


Cancer Research | 2011

Differentiation of NUT midline carcinoma by epigenomic reprogramming.

Brian E. Schwartz; Matthias D. Hofer; Madeleine E. Lemieux; Daniel E. Bauer; Michael J. Cameron; Nathan West; Elin S. Agoston; Nicolas Reynoird; Saadi Khochbin; Tan A. Ince; Amanda L. Christie; Katherine A. Janeway; Sara O. Vargas; Antonio R. Perez-Atayde; Stephen E. Sallan; Andrew L. Kung; James E. Bradner; Christopher A. French

NUT midline carcinoma (NMC) is a lethal pediatric tumor defined by the presence of BRD-NUT fusion proteins that arrest differentiation. Here we explore the mechanisms underlying the ability of BRD4-NUT to prevent squamous differentiation. In both gain-of and loss-of-expression assays, we find that expression of BRD4-NUT is associated with globally decreased histone acetylation and transcriptional repression. Bulk chromatin acetylation can be restored by treatment of NMC cells with histone deacetylase inhibitors (HDACi), engaging a program of squamous differentiation and arrested growth in vitro that closely mimics the effects of siRNA-mediated attenuation of BRD4-NUT expression. The potential therapeutic utility of HDACi differentiation therapy was established in three different NMC xenograft models, where it produced significant growth inhibition and a survival benefit. Based on these results and translational studies performed with patient-derived primary tumor cells, a child with NMC was treated with the FDA-approved HDAC inhibitor, vorinostat. An objective response was obtained after five weeks of therapy, as determined by positron emission tomography. These findings provide preclinical support for trials of HDACi in patients with NMC.


Journal of the American Chemical Society | 2009

Synthesis and Conformation-Activity Relationships of the Peptide Isosteres of FK228 and Largazole

Albert A. Bowers; Thomas J. Greshock; Nathan West; Guillermina Estiu; Stuart L. Schreiber; Olaf Wiest; Robert M. Williams; James E. Bradner

The peptide isosteres (10 and 11) of the naturally occurring and potent histone deacetylase (HDAC) inhibitors FK228 and largazole have been synthesized and evaluated side-by-side with FK228, largazole, and SAHA for inhibition of the class I HDACs 1, 2, 3, and 6.


Organic Letters | 2009

Synthesis and Histone Deacetylase Inhibitory Activity of Largazole Analogs: Alteration of the Zinc-Binding Domain and Macrocyclic Scaffold

Albert A. Bowers; Nathan West; Tenaya Newkirk; Annie E. Troutman-Youngman; Stuart L. Schreiber; Olaf Wiest; James E. Bradner; Robert M. Williams

Fourteen analogs of the marine natural product largazole have been prepared and assayed against histone deacetylases (HDACs) 1, 2, 3, and 6. Olefin cross-metathesis was used to efficiently access six variants of the side-chain zinc-binding domain, while adaptation of our previously reported modular synthesis allowed probing of the macrocyclic cap group.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma

Teru Hideshima; Jun Qi; Ronald M. Paranal; Weiping Tang; Edward Greenberg; Nathan West; Meaghan E. Colling; Guillermina Estiu; Ralph Mazitschek; Jennifer A. Perry; Hiroto Ohguchi; Francesca Cottini; Naoya Mimura; Gullu Gorgun; Yu-Tzu Tai; Paul G. Richardson; Ruben D. Carrasco; Olaf Wiest; Stuart L. Schreiber; Kenneth C. Anderson; James Elliot Bradner

Significance Proteasome inhibitors show remarkable anti-multiple myeloma (MM) activity in preclinical and clinical studies. However, resistance develops in the majority of patients, and novel treatments are urgently needed. Histone deacetylase 6 (HDAC6) has been shown to mediate aggresomal protein degradation and could be a potential target for combination treatment to overcome drug resistance. Here we designed and developed an HDAC6-selective small molecule inhibitor, WT161, and used this compound to define mechanisms of anti-MM activity, both alone and in combination with proteasome inhibitors in in vitro and in vivo studies. This study has established the framework for combination treatment of HDAC6 inhibitors with proteasome inhibitors in MM and validates an in vivo quality chemical probe for broad use by the research community. Multiple myeloma (MM) has proven clinically susceptible to modulation of pathways of protein homeostasis. Blockade of proteasomal degradation of polyubiquitinated misfolded proteins by the proteasome inhibitor bortezomib (BTZ) achieves responses and prolongs survival in MM, but long-term treatment with BTZ leads to drug-resistant relapse in most patients. In a proof-of-concept study, we previously demonstrated that blocking aggresomal breakdown of polyubiquitinated misfolded proteins with the histone deacetylase 6 (HDAC6) inhibitor tubacin enhances BTZ-induced cytotoxicity in MM cells in vitro. However, these foundational studies were limited by the pharmacologic liabilities of tubacin as a chemical probe with only in vitro utility. Emerging from a focused library synthesis, a potent, selective, and bioavailable HDAC6 inhibitor, WT161, was created to study the mechanism of action of HDAC6 inhibition in MM alone and in combination with BTZ. WT161 in combination with BTZ triggers significant accumulation of polyubiquitinated proteins and cell stress, followed by caspase activation and apoptosis. More importantly, this combination treatment was effective in BTZ-resistant cells and in the presence of bone marrow stromal cells, which have been shown to mediate MM cell drug resistance. The activity of WT161 was confirmed in our human MM cell xenograft mouse model and established the framework for clinical trials of the combination treatment to improve patient outcomes in MM.


Bioorganic & Medicinal Chemistry Letters | 2011

A novel HDAC inhibitor with a hydroxy-pyrimidine scaffold.

Melissa M. Kemp; Qiu Wang; Jason H. Fuller; Nathan West; Nicole M. Martinez; Elizabeth Morse; Michel Weiwer; Stuart L. Schreiber; James E. Bradner; Angela N. Koehler

Histone deacetylases (HDACs) are enzymes involved in many important biological functions. They have been linked to a variety of cancers, psychiatric disorders, and other diseases. Since small molecules can serve as probes to study the relevant biological roles of HDACs, novel scaffolds are necessary to develop more efficient, selective drug candidates. Screening libraries of molecules may yield structurally diverse probes that bind these enzymes and modulate their functions in cells. Here we report a small molecule with a novel hydroxy-pyrimidine scaffold that inhibits multiple HDAC enzymes and modulates acetylation levels in cells. Analogs were synthesized in an effort to evaluate structure-activity relationships.

Collaboration


Dive into the Nathan West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Wiest

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert A. Bowers

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Kung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge