Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathanael J. Spann is active.

Publication


Featured researches published by Nathanael J. Spann.


Molecular Cell | 2010

Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities

Sven Heinz; Christopher Benner; Nathanael J. Spann; Eric Bertolino; Yin C. Lin; Peter Laslo; Jason X. Cheng; Cornelis Murre; Harinder Singh; Christopher K. Glass

Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs.


Cell | 2012

Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses

Nathanael J. Spann; Lana X. Garmire; Jeffrey G. McDonald; David S. Myers; Stephen B. Milne; Norihito Shibata; Donna Reichart; Jesse N. Fox; Iftach Shaked; Daniel Heudobler; Christian R. H. Raetz; Elaine W. Wang; Samuel Kelly; M. Cameron Sullards; Robert C. Murphy; Alfred H. Merrill; H. Alex Brown; Edward A. Dennis; Andrew C. Li; Klaus Ley; Sotirios Tsimikas; Eoin Fahy; Shankar Subramaniam; Oswald Quehenberger; David W. Russell; Christopher K. Glass

Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Txnip balances metabolic and growth signaling via PTEN disulfide reduction.

Simon T. Hui; Allen M. Andres; Amber K. Miller; Nathanael J. Spann; Douglas W. Potter; Noah M. Post; Amelia Z. Chen; Sowbarnika Sachithanantham; Dae Young Jung; Jason K. Kim; Roger A. Davis

Thioredoxin-interacting protein (Txnip) inhibits thioredoxin NADPH-dependent reduction of protein disulfides. Total Txnip knockout (TKO) mice adapted inappropriately to prolonged fasting by shifting fuel dependence of skeletal muscle and heart from fat and ketone bodies to glucose. TKO mice exhibited increased Akt signaling, insulin sensitivity, and glycolysis in oxidative tissues (skeletal muscle and hearts) but not in lipogenic tissues (liver and adipose tissue). The selective activation of Akt in skeletal muscle and hearts was associated with impaired mitochondrial fuel oxidation and the accumulation of oxidized (inactive) PTEN, whose activity depends on reduction of two critical cysteine residues. Whereas muscle- and heart-specific Txnip knockout mice recapitulated the metabolic phenotype exhibited by TKO mice, liver-specific Txnip knockout mice were similar to WT mice. Embryonic fibroblasts derived from knockout mice also accumulated oxidized (inactive) PTEN and had elevated Akt phosphorylation. In addition, they had faster growth rates and increased dependence on anaerobic glycolysis due to impaired mitochondrial fuel oxidation, and they were resistant to doxorubicin-facilitated respiration-dependent apoptosis. In the absence of Txnip, oxidative inactivation of PTEN and subsequent activation of Akt attenuated mitochondrial respiration, resulting in the accumulation of NADH, a competitive inhibitor of thioredoxin NADPH-reductive activation of PTEN. These findings indicate that, in nonlipogenic tissues, Txnip is required to maintain sufficient thioredoxin NADPH activity to reductively reactivate oxidized PTEN and oppose Akt downstream signaling.


Immunity | 2013

The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response

Mathieu Blanc; Wei Yuan Hsieh; Kevin Robertson; Kai A. Kropp; Thorsten Forster; Guanghou Shui; Paul Lacaze; Steven Watterson; Samantha J. Griffiths; Nathanael J. Spann; Anna Meljon; Simon G. Talbot; Kathiresan Krishnan; Douglas F. Covey; Markus R. Wenk; Marie Craigon; Zsolts Ruzsics; Jürgen Haas; Ana Angulo; William J. Griffiths; Christopher K. Glass; Yuqin Wang; Peter Ghazal

Summary Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.


Nature Immunology | 2013

Sterols and oxysterols in immune cell function.

Nathanael J. Spann; Christopher K. Glass

Intermediates in the cholesterol-biosynthetic pathway and oxysterol derivatives of cholesterol regulate diverse cellular processes. Recent studies have expanded the appreciation of their roles in controlling the functions of cells of the innate and adaptive immune systems. Here we review recent literature reporting on the biological functions of sterol intermediates and oxysterols, acting through transcription factors such as the liver X receptors (LXRs), sterol regulatory element–binding proteins (SREBPs) and the G protein–coupled receptor EBI2, in regulating the differentiation and population expansion of cells of the innate and adaptive immune systems, their responses to inflammatory mediators, their effects on the phagocytic functions of macrophages and their effects on antiviral activities and the migration of immune cells. Such findings have raised many new questions about the production of endogenous bioactive sterols and oxysterols and their mechanisms of action in the immune system.


The EMBO Journal | 2010

FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages

WuQiang Fan; Hidetaka Morinaga; Jane J. Kim; Eunju Bae; Nathanael J. Spann; Sven Heinz; Christopher K. Glass; Jerrold M. Olefsky

The macrophage‐mediated inflammatory response is a key etiologic component of obesity‐related tissue inflammation and insulin resistance. The transcriptional factor FoxO1 is a key regulator of cell metabolism, cell cycle and cell death. Its activity is tightly regulated by the phosphoinositide‐3‐kinase‐AKT (PI3K‐Akt) pathway, which leads to phosphorylation, cytoplasmic retention and inactivation of FoxO1. Here, we show that FoxO1 promotes inflammation by enhancing Tlr4‐mediated signalling in mature macrophages. By means of chromatin immunoprecipitation (ChIP) combined with massively parallel sequencing (ChIP‐Seq), we show that FoxO1 binds to multiple enhancer‐like elements within the Tlr4 gene itself, as well as to sites in a number of Tlr4 signalling pathway genes. While FoxO1 potentiates Tlr4 signalling, activation of the latter induces AKT and subsequently inactivates FoxO1, establishing a self‐limiting mechanism of inflammation. Given the central role of macrophage Tlr4 in transducing extrinsic proinflammatory signals, the novel functions for FoxO1 in macrophages as a transcriptional regulator of the Tlr4 gene and its inflammatory pathway, highlights FoxO1 as a key molecular adaptor integrating inflammatory responses in the context of obesity and insulin resistance.


Molecular Cell | 2012

Control of Proinflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20

Joshua D. Stender; Gabriel Pascual; Wen Liu; Minna U. Kaikkonen; Kevin Do; Nathanael J. Spann; Michael Boutros; Norbert Perrimon; Michael G. Rosenfeld; Christopher K. Glass

Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of coregulator complexes that function to read, write, and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for the role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that restricts expression of toll-like receptor 4 (TLR4) target genes in macrophages. H4K20me3 is deposited at the promoters of a subset of these genes by the SMYD5 histone methyltransferase through its association with NCoR corepressor complexes. Signal-dependent erasure of H4K20me3 is required for effective gene activation and is achieved by NF-κB-dependent delivery of the histone demethylase PHF2. Liver X receptors antagonize TLR4-dependent gene activation by maintaining NCoR/SMYD5-mediated repression. These findings reveal a histone H4K20 trimethylation/demethylation strategy that integrates positive and negative signaling inputs that control immunity and homeostasis.


Journal of Lipid Research | 2015

Biomarkers of NAFLD progression: a lipidomics approach to an epidemic

D. Lee Gorden; David S. Myers; Pavlina T. Ivanova; Eoin Fahy; Mano Ram Maurya; Shakti Gupta; Jun Min; Nathanael J. Spann; Jeffrey G. McDonald; Samuel Kelly; Jingjing Duan; M. Cameron Sullards; Thomas J. Leiker; Robert M. Barkley; Oswald Quehenberger; Aaron M. Armando; Stephen B. Milne; Thomas P. Mathews; Michelle D. Armstrong; Chijun Li; Willie Melvin; Ronald H. Clements; M. Kay Washington; Alisha M. Mendonsa; Joseph L. Witztum; Ziqiang Guan; Christopher K. Glass; Robert C. Murphy; Edward A. Dennis; Alfred H. Merrill

The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an “omics” approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.


Journal of Biological Chemistry | 2006

Coordinate Transcriptional Repression of Liver Fatty Acid-binding Protein and Microsomal Triglyceride Transfer Protein Blocks Hepatic Very Low Density Lipoprotein Secretion without Hepatosteatosis

Nathanael J. Spann; Sohye Kang; Andrew C. Li; Amelia Z. Chen; Elizabeth P. Newberry; Nicholas O. Davidson; Simon T. Hui; Roger A. Davis

Unlike the livers of humans and mice, and most hepatoma cells, which accumulate triglycerides when treated with microsomal triglyceride transfer protein (MTP) inhibitors, L35 rat hepatoma cells do not express MTP and cannot secrete very low density lipoprotein (VLDL), yet they do not accumulate triglyceride. In these studies we show that transcriptional co-repression of the two lipid transfer proteins, liver fatty acid-binding protein (L-FABP) and MTP, which cooperatively shunt fatty acids into de novo synthesized glycerolipids and the transfer of lipids into VLDL, respectively, act together to maintain hepatic lipid homeostasis. FAO rat hepatoma cells express L-FABP and MTP and demonstrate the ability to assemble and secrete VLDL. In contrast, L35 cells, derived as a single cell clone from FAO cells, do not express L-FABP or MTP nor do they assemble and secrete VLDL. We used these hepatoma cells to elucidate how a conserved DR1 promoter element present in the promoters of L-FABP and MTP affects transcription, expression, and VLDL production. In FAO cells, the DR1 elements of both L-FABP and MTP promoters are occupied by peroxisome proliferator-activated receptor α-retinoid X receptor α (RXRα), with which PGC-1β activates transcription. In contrast, in L35 cells the DR1 elements of both L-FABP and MTP promoters are occupied by chicken ovalbumin upstream promoter transcription factor II, and transcription is diminished. The combined findings indicate that peroxisome proliferator-activated receptor α-RXRα and PGC-1β coordinately up-regulate L-FABP and MTP expression, by competing with chicken ovalbumin upstream promoter transcription factor II for the DR1 sites in the proximal promoters of each gene. Additional studies show that ablation of L-FABP prevents hepatic steatosis caused by treating mice with an MTP inhibitor. Our findings show that reducing both L-FABP and MTP is an effective means to reduce VLDL secretion without causing hepatic steatosis.


Embo Molecular Medicine | 2014

Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions

Marten A. Hoeksema; Marion J. J. Gijbels; Jan Van den Bossche; Saskia van der Velden; Ayestha Sijm; Annette E. Neele; Tom Seijkens; J. Lauran Stoger; Svenja Meiler; Marieke C.S. Boshuizen; Geesje M. Dallinga-Thie; Johannes H. M. Levels; Louis Boon; Shannon E. Mullican; Nathanael J. Spann; Jack P.M. Cleutjens; Christopher K. Glass; Mitchell A. Lazar; Carlie J.M. de Vries; Erik A.L. Biessen; Mat J.A.P. Daemen; Esther Lutgens; Menno P.J. de Winther

Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti‐inflammatory wound healing characteristics and showed improved lipid handling. The pro‐fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro‐fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease.

Collaboration


Dive into the Nathanael J. Spann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Verena M. Link

University of California

View shared research outputs
Top Co-Authors

Avatar

Minna U. Kaikkonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey G. McDonald

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jenhan Tao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger A. Davis

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Eoin Fahy

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge