Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel G. Mahieu is active.

Publication


Featured researches published by Nathaniel G. Mahieu.


Analytical Chemistry | 2015

Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

H. Paul Benton; Julijana Ivanisevic; Nathaniel G. Mahieu; Michael E. Kurczy; Caroline H. Johnson; Lauren Franco; Duane Rinehart; Elizabeth Valentine; Harsha Gowda; Baljit K. Ubhi; Ralf Tautenhahn; Andrew Gieschen; Matthew W. Fields; Gary J. Patti; Gary Siuzdak

An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.


The Journal of Neuroscience | 2013

The Disruption of Celf6, a Gene Identified by Translational Profiling of Serotonergic Neurons, Results in Autism-Related Behaviors

Joseph D. Dougherty; Susan E. Maloney; David F. Wozniak; Michael A. Rieger; Lisa I. Sonnenblick; Giovanni Coppola; Nathaniel G. Mahieu; Juliet Zhang; Jinlu Cai; Gary J. Patti; Brett S. Abrahams; Daniel H. Geschwind; Nathaniel Heintz

The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders.


Nature Chemical Biology | 2016

Lactate metabolism is associated with mammalian mitochondria

Ying Jr Chen; Nathaniel G. Mahieu; Xiaojing Huang; Manmilan Singh; Peter A. Crawford; Stephen L. Johnson; Richard W. Gross; Jacob Schaefer; Gary J. Patti

It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. Within the fermenting cell itself, however, it is generally assumed that lactate is produced to replenish NAD+ and then is secreted. Here we explored the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. With high-resolution mass spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells.


Analytical Chemistry | 2013

An Untargeted Metabolomic Workflow to Improve Structural Characterization of Metabolites

Igor Nikolskiy; Nathaniel G. Mahieu; Ying-Jr Chen; Ralf Tautenhahn; Gary J. Patti

Mass spectrometry-based metabolomics relies on MS(2) data for structural characterization of metabolites. To obtain the high-quality MS(2) data necessary to support metabolite identifications, ions of interest must be purely isolated for fragmentation. Here, we show that metabolomic MS(2) data are frequently characterized by contaminating ions that prevent structural identification. Although using narrow-isolation windows can minimize contaminating MS(2) fragments, even narrow windows are not always selective enough, and they can complicate data analysis by removing isotopic patterns from MS(2) spectra. Moreover, narrow windows can significantly reduce sensitivity. In this work, we introduce a novel, two-part approach for performing metabolomic identifications that addresses these issues. First, we collect MS(2) scans with less stringent isolation settings to obtain improved sensitivity at the expense of specificity. Then, by evaluating MS(2) fragment intensities as a function of retention time and precursor mass targeted for MS(2) analysis, we obtain deconvolved MS(2) spectra that are consistent with pure standards and can therefore be used for metabolite identification. The value of our approach is highlighted with metabolic extracts from brain, liver, astrocytes, as well as nerve tissue, and performance is evaluated by using pure metabolite standards in combination with simulations based on raw MS(2) data from the METLIN metabolite database. A R package implementing the algorithms used in our workflow is available on our laboratory website ( http://pattilab.wustl.edu/decoms2.php ).


Analytical Chemistry | 2014

Credentialing features: a platform to benchmark and optimize untargeted metabolomic methods.

Nathaniel G. Mahieu; Xiaojing Huang; Ying-Jr Chen; Gary J. Patti

The aim of untargeted metabolomics is to profile as many metabolites as possible, yet a major challenge is comparing experimental method performance on the basis of metabolome coverage. To date, most published approaches have compared experimental methods by counting the total number of features detected. Due to artifactual interference, however, this number is highly variable and therefore is a poor metric for comparing metabolomic methods. Here we introduce an alternative approach to benchmarking metabolome coverage which relies on mixed Escherichia coli extracts from cells cultured in regular and 13C-enriched media. After mass spectrometry-based metabolomic analysis of these extracts, we “credential” features arising from E. coli metabolites on the basis of isotope spacing and intensity. This credentialing platform enables us to accurately compare the number of nonartifactual features yielded by different experimental approaches. We highlight the value of our platform by reoptimizing a published untargeted metabolomic method for XCMS data processing. Compared to the published parameters, the new XCMS parameters decrease the total number of features by 15% (a reduction in noise features) while increasing the number of true metabolites detected and grouped by 20%. Our credentialing platform relies on easily generated E. coli samples and a simple software algorithm that is freely available on our laboratory Web site (http://pattilab.wustl.edu/software/credential/). We have validated the credentialing platform with reversed-phase and hydrophilic interaction liquid chromatography as well as Agilent, Thermo Scientific, AB SCIEX, and LECO mass spectrometers. Thus, the credentialing platform can readily be applied by any laboratory to optimize their untargeted metabolomic pipeline for metabolite extraction, chromatographic separation, mass spectrometric detection, and bioinformatic processing.


Analytical Chemistry | 2014

isoMETLIN: a database for isotope-based metabolomics.

Kevin Cho; Nathaniel G. Mahieu; Julijana Ivanisevic; Winnie Uritboonthai; Ying-Jr Chen; Gary Siuzdak; Gary J. Patti

The METLIN metabolite database has become one of the most widely used resources in metabolomics for making metabolite identifications. However, METLIN is not designed to identify metabolites that have been isotopically labeled. As a result, unbiasedly tracking the transformation of labeled metabolites with isotope-based metabolomics is a challenge. Here, we introduce a new database, called isoMETLIN (http://isometlin.scripps.edu/), that has been developed specifically to identify metabolites incorporating isotopic labels. isoMETLIN enables users to search all computed isotopologues derived from METLIN on the basis of mass-to-charge values and specified isotopes of interest, such as (13)C or (15)N. Additionally, isoMETLIN contains experimental MS/MS data on hundreds of isotopomers. These data assist in localizing the position of isotopic labels within a metabolite. From these experimental MS/MS isotopomer spectra, precursor atoms can be mapped to fragments. The MS/MS spectra of additional isotopomers can then be computationally generated and included within isoMETLIN. Given that isobaric isotopomers cannot be separated chromatographically or by mass but are likely to occur simultaneously in a biological system, we have also implemented a spectral-mixing function in isoMETLIN. This functionality allows users to combine MS/MS spectra from various isotopomers in different ratios to obtain a theoretical MS/MS spectrum that matches the MS/MS spectrum from a biological sample. Thus, by searching MS and MS/MS experimental data, isoMETLIN facilitates the identification of isotopologues as well as isotopomers from biological samples and provides a platform to drive the next generation of isotope-based metabolomic studies.


Current Opinion in Biotechnology | 2014

After the feature presentation: technologies bridging untargeted metabolomics and biology.

Kevin Cho; Nathaniel G. Mahieu; Stephen L. Johnson; Gary J. Patti

Liquid chromatography/mass spectrometry-based untargeted metabolomics is now an established experimental approach that is being broadly applied by many laboratories worldwide. Interpreting untargeted metabolomic data, however, remains a challenge and limits the translation of results into biologically relevant conclusions. Here we review emerging technologies that can be applied after untargeted profiling to extend biological interpretation of metabolomic data. These technologies include advances in bioinformatic software that enable identification of isotopes and adducts, comprehensive pathway mapping, deconvolution of MS(2) data, and tracking of isotopically labeled compounds. There are also opportunities to gain additional biological insight by complementing the metabolomic analysis of homogenized samples with recently developed technologies for metabolite imaging of intact tissues. To maximize the value of these emerging technologies, a unified workflow is discussed that builds on the traditional untargeted metabolomic pipeline. Particularly when integrated together, the combination of the advances highlighted in this review helps transform lists of masses and fold changes characteristic of untargeted profiling results into structures, absolute concentrations, pathway fluxes, and localization patterns that are typically needed to understand biology.


Analytical Chemistry | 2016

Defining and Detecting Complex Peak Relationships in Mass Spectral Data: The Mz.unity Algorithm

Nathaniel G. Mahieu; Jonathan L. Spalding; Susan J. Gelman; Gary J. Patti

Analysis of a single analyte by mass spectrometry can result in the detection of more than 100 degenerate peaks. These degenerate peaks complicate spectral interpretation and are challenging to annotate. In mass spectrometry-based metabolomics, this degeneracy leads to inflated false discovery rates, data sets containing an order of magnitude more features than analytes, and an inefficient use of resources during data analysis. Although software has been introduced to annotate spectral degeneracy, current approaches are unable to represent several important classes of peak relationships. These include heterodimers and higher complex adducts, distal fragments, relationships between peaks in different polarities, and complex adducts between features and background peaks. Here we outline sources of peak degeneracy in mass spectra that are not annotated by current approaches and introduce a software package called mz.unity to detect these relationships in accurate mass data. Using mz.unity, we find that data sets contain many more complex relationships than we anticipated. Examples include the adduct of glutamate and nicotinamide adenine dinucleotide (NAD), fragments of NAD detected in the same or opposite polarities, and the adduct of glutamate and a background peak. Further, the complex relationships we identify show that several assumptions commonly made when interpreting mass spectral degeneracy do not hold in general. These contributions provide new tools and insight to aid in the annotation of complex spectral relationships and provide a foundation for improved data set identification. Mz.unity is an R package and is freely available at https://github.com/nathaniel-mahieu/mz.unity as well as our laboratory Web site http://pattilab.wustl.edu/software/ .


Biochemistry | 2014

Differential incorporation of glucose into biomass during Warburg metabolism.

Ying-Jr Chen; Xiaojing Huang; Nathaniel G. Mahieu; Kevin Cho; Jacob Schaefer; Gary J. Patti

It is well established that most cancer cells take up an increased amount of glucose relative to that taken up by normal differentiated cells. The majority of this glucose carbon is secreted from the cell as lactate. The fate of the remaining glucose carbon, however, has not been well-characterized. Here we apply a novel combination of metabolomic technologies to track uniformly labeled glucose in HeLa cancer cells. We provide a list of specific intracellular metabolites that become enriched after being labeled for 48 h and quantitate the fraction of consumed glucose that ends up in proteins, peptides, sugars/glycerol, and lipids.


Analytical Chemistry | 2016

Bar Coding MS2 Spectra for Metabolite Identification

Jonathan L. Spalding; Kevin Cho; Nathaniel G. Mahieu; Igor Nikolskiy; Elizabeth M. Llufrio; Stephen L. Johnson; Gary J. Patti

Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS2 spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS2 spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1’s to bins containing fragments and 0’s to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS2 library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS2 data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS2-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies.

Collaboration


Dive into the Nathaniel G. Mahieu's collaboration.

Top Co-Authors

Avatar

Gary J. Patti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kevin Cho

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Spalding

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Johnson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ying-Jr Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Fuad J. Naser

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gary Siuzdak

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Igor Nikolskiy

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Susan J. Gelman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Huang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge