Nathaniel Hafer
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathaniel Hafer.
Genetics | 2011
Nathaniel Hafer; Shuwa Xu; Krishna Moorthi Bhat; Paul Schedl
Cytoplasmic polyadenylation element binding (CPEB) proteins bind mRNAs to regulate their localization and translation. While the first CPEBs discovered were germline specific, subsequent studies indicate that CPEBs also function in many somatic tissues including the nervous system. Drosophila has two CPEB family members. One of these, orb, plays a key role in the establishment of polarity axes in the developing egg and early embryo, but has no known somatic functions or expression outside of the germline. Here we characterize the other Drosophila CPEB, orb2. Unlike orb, orb2 mRNA and protein are found throughout development in many different somatic tissues. While orb2 mRNA and protein of maternal origin are distributed uniformly in early embryos, this pattern changes as development proceeds and by midembryogenesis the highest levels are found in the CNS and PNS. In the embryonic CNS, Orb2 appears to be concentrated in cell bodies and mostly absent from the longitudinal and commissural axon tracts. In contrast, in the adult brain, the protein is seen in axonal and dendritic terminals. Lethal effects are observed for both RNAi knockdowns and orb2 mutant alleles while surviving adults display locomotion and behavioral defects. We also show that orb2 funtions in asymmetric division of stem cells and precursor cells during the development of the embryonic nervous system and mesoderm.
PLOS Genetics | 2012
Shuwa Xu; Nathaniel Hafer; Blessing Agunwamba; Paul Schedl
Cytoplasmic Polyadenylation Element Binding (CPEB) proteins are translational regulators that can either activate or repress translation depending on the target mRNA and the specific biological context. There are two CPEB subfamilies and most animals have one or more genes from each. Drosophila has a single CPEB gene, orb and orb2, from each subfamily. orb expression is only detected at high levels in the germline and has critical functions in oogenesis but not spermatogenesis. By contrast, orb2 is broadly expressed in the soma; and previous studies have revealed important functions in asymmetric cell division, viability, motor function, learning, and memory. Here we show that orb2 is also expressed in the adult male germline and that it has essential functions in programming the progression of spermatogenesis from meiosis through differentiation. Like the translational regulators boule (bol) and off-schedule (ofs), orb2 is required for meiosis and orb2 mutant spermatocytes undergo a prolonged arrest during the meiotic G2-M transition. However, orb2 differs from boule and off-schedule in that this arrest occurs at a later step in meiotic progression after the synthesis of the meiotic regulator twine. orb2 is also required for the orderly differentiation of the spermatids after meiosis is complete. The differentiation defects in orb2 mutants include abnormal elongation of the spermatid flagellar axonemes, a failure in individualization and improper post-meiotic gene expression. Amongst the orb2 differentiation targets are orb and two other mRNAs, which are transcribed post-meiotically and localized to the tip of the flagellar axonemes. Additionally, analysis of a partial loss of function orb2 mutant suggests that the orb2 differentiation phenotypes are independent of the earlier arrest in meiosis.
Health Physics | 2010
Nathaniel Hafer; David R. Cassatt; Andrea L. DiCarlo; Narayani Ramakrishnan; Joseph M. Kaminski; Mai-Kim Norman; Bert W. Maidment; Richard J. Hatchett
One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. The U.S. Government has addressed these threats with a two-pronged strategy of preventing organizations from obtaining weapons of mass destruction and preparing in case an event occurs. The National Institute of Allergy and Infectious Diseases (NIAID) contributes to these preparedness efforts by supporting basic research and development for chemical, biological, radiological, and nuclear countermeasures for civilian use. The Radiation Countermeasures Program at NIAID has established a broad research agenda focused on the development of new medical products to mitigate and treat acute and long-term radiation injury, promote the clearance of internalized radionuclides, and facilitate accurate individual dose and exposure assessment. This paper reviews the recent work and collaborations supported by the Radiation Countermeasures Program.
Clinical and Translational Science | 2014
Lynn M. Rose; Maaike Everts; Caren Heller; Christine Burke; Nathaniel Hafer; Scott Steele
To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee.
Clinical and Translational Science | 2014
Lynn M. Rose; Maaike Everts; Caren Heller; Christine Burke; Nathaniel Hafer; Scott Steele
To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee.
Clinical and Translational Science | 2014
Lynn M. Rose; Maaike Everts; Caren Heller; Christine Burke; Nathaniel Hafer; Scott Steele
To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee.
Clinical and Translational Science | 2014
Jana Shirey-Rice; Brandy Mapes; Melissa A. Basford; Anneliese Zufelt; Firas H. Wehbe; Paul A. Harris; Michael Alcorn; David Allen; Margaret Arnim; Susan Autry; Michael S. Briggs; Andrea Carnegie; Deborah Chavis-Keeling; Carlos De La Pena; Doris Dworschak; Julie Earnest; Terri Grieb; Marilyn Guess; Nathaniel Hafer; Tesheia Johnson; Amanda Kasper; Janice Kopp; Timothy Lockie; Vincetta Lombardo; Leslie McHale; Andrea Minogue; Beth Nunnally; Deanna O'Quinn; Kelly Peck; Kieran Pemberton
The 61 CTSA Consortium sites are home to valuable programs and infrastructure supporting translational science and all are charged with ensuring that such investments translate quickly to improved clinical care. Catalog of Assets for Translational and Clinical Health Research (CATCHR) is the Consortiums effort to collect and make available information on programs and resources to maximize efficiency and facilitate collaborations. By capturing information on a broad range of assets supporting the entire clinical and translational research spectrum, CATCHR aims to provide the necessary infrastructure and processes to establish and maintain an open‐access, searchable database of consortium resources to support multisite clinical and translational research studies. Data are collected using rigorous, defined methods, with the resulting information made visible through an integrated, searchable Web‐based tool. Additional easy‐to‐use Web tools assist resource owners in validating and updating resource information over time. In this paper, we discuss the design and scope of the project, data collection methods, current results, and future plans for development and sustainability. With increasing pressure on research programs to avoid redundancy, CATCHR aims to make available information on programs and core facilities to maximize efficient use of resources.
Clinical and Translational Science | 2014
Jana Shirey-Rice; Brandy Mapes; Melissa A. Basford; Anneliese Zufelt; Firas H. Wehbe; Paul A. Harris; Michael Alcorn; David Allen; Margaret Arnim; Susan Autry; Michael S. Briggs; Andrea Carnegie; Deborah Chavis-Keeling; Carlos De La Pena; Doris Dworschak; Julie Earnest; Terri Grieb; Marilyn Guess; Nathaniel Hafer; Tesheia Johnson; Amanda Kasper; Janice Kopp; Timothy Lockie; Vincetta Lombardo; Leslie McHale; Andrea Minogue; Beth Nunnally; Deanna O'Quinn; Kelly Peck; Kieran Pemberton
The 61 CTSA Consortium sites are home to valuable programs and infrastructure supporting translational science and all are charged with ensuring that such investments translate quickly to improved clinical care. Catalog of Assets for Translational and Clinical Health Research (CATCHR) is the Consortiums effort to collect and make available information on programs and resources to maximize efficiency and facilitate collaborations. By capturing information on a broad range of assets supporting the entire clinical and translational research spectrum, CATCHR aims to provide the necessary infrastructure and processes to establish and maintain an open‐access, searchable database of consortium resources to support multisite clinical and translational research studies. Data are collected using rigorous, defined methods, with the resulting information made visible through an integrated, searchable Web‐based tool. Additional easy‐to‐use Web tools assist resource owners in validating and updating resource information over time. In this paper, we discuss the design and scope of the project, data collection methods, current results, and future plans for development and sustainability. With increasing pressure on research programs to avoid redundancy, CATCHR aims to make available information on programs and core facilities to maximize efficient use of resources.
Clinical and Translational Science | 2014
Jana Shirey-Rice; Brandy Mapes; Melissa A. Basford; Anneliese Moosman; Firas H. Wehbe; Paul A. Harris; Michael Alcorn; David Allen; Margaret Arnim; Susan Autry; Michael S. Briggs; Andrea Carnegie; Deborah Chavis-Keeling; Carlos De La Pena; Doris Dworschak; Julie Earnest; Terri Grieb; Marilyn Guess; Nathaniel Hafer; Tesheia Johnson; Amanda Kasper; Janice Kopp; Timothy Lockie; Vincetta Lombardo; Leslie McHale; Andrea Minogue; Beth Nunnally; Deanna O’Quinn; Kelly Peck; Kieran Pemberton
The 61 CTSA Consortium sites are home to valuable programs and infrastructure supporting translational science and all are charged with ensuring that such investments translate quickly to improved clinical care. Catalog of Assets for Translational and Clinical Health Research (CATCHR) is the Consortiums effort to collect and make available information on programs and resources to maximize efficiency and facilitate collaborations. By capturing information on a broad range of assets supporting the entire clinical and translational research spectrum, CATCHR aims to provide the necessary infrastructure and processes to establish and maintain an open‐access, searchable database of consortium resources to support multisite clinical and translational research studies. Data are collected using rigorous, defined methods, with the resulting information made visible through an integrated, searchable Web‐based tool. Additional easy‐to‐use Web tools assist resource owners in validating and updating resource information over time. In this paper, we discuss the design and scope of the project, data collection methods, current results, and future plans for development and sustainability. With increasing pressure on research programs to avoid redundancy, CATCHR aims to make available information on programs and core facilities to maximize efficient use of resources.
Biosecurity and Bioterrorism-biodefense Strategy Practice and Science | 2010
Nathaniel Hafer; Bert W. Maidment; Richard J. Hatchett
Collaboration
Dive into the Nathaniel Hafer's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs