Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel R. Landau is active.

Publication


Featured researches published by Nathaniel R. Landau.


Nature Immunology | 2012

SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates

Hichem Lahouassa; Waaqo Daddacha; Henning Hofmann; Diana Ayinde; Eric C. Logue; Loïc Dragin; Nicolin Bloch; Claire Maudet; Matthieu Bertrand; Thomas Gramberg; Gianfranco Pancino; Stéphane Priet; Bruno Canard; Nadine Laguette; Monsef Benkirane; Catherine Transy; Nathaniel R. Landau; Baek Kim; Florence Margottin-Goguet

SAMHD1 restricts the infection of dendritic and other myeloid cells by human immunodeficiency virus type 1 (HIV-1), but in lentiviruses of the simian immunodeficiency virus of sooty mangabey (SIVsm)–HIV-2 lineage, SAMHD1 is counteracted by the virion-packaged accessory protein Vpx. Here we found that SAMHD1 restricted infection by hydrolyzing intracellular deoxynucleoside triphosphates (dNTPs), lowering their concentrations to below those required for the synthesis of the viral DNA by reverse transcriptase (RT). SAMHD1-mediated restriction was alleviated by the addition of exogenous deoxynucleosides. An HIV-1 with a mutant RT with low affinity for dNTPs was particularly sensitive to SAMHD1-mediated restriction. Vpx prevented the SAMHD1-mediated decrease in dNTP concentration and induced the degradation of human and rhesus macaque SAMHD1 but had no effect on mouse SAMHD1. Nucleotide-pool depletion could be a general mechanism for protecting cells from infectious agents that replicate through a DNA intermediate.


Nature Medicine | 2012

SAMHD1 restricts HIV-1 infection in resting CD4 + T cells

Hanna-Mari Baldauf; Xiaoyu Pan; Elina Erikson; Sarah Schmidt; Waaqo Daddacha; Manja Burggraf; Kristina Schenkova; Ina Ambiel; Guido H. Wabnitz; Thomas Gramberg; Sylvia Panitz; Egbert Flory; Nathaniel R. Landau; Serkan Sertel; Frank Rutsch; Felix Lasitschka; Baek Kim; Renate König; Oliver T. Fackler; Oliver T. Keppler

Unlike activated CD4+ T cells, resting CD4+ T cells are highly resistant to productive HIV-1 infection. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4+ T cells. SAMHD1 is abundantly expressed in resting CD4+ T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4+ T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4+ T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4+ T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Abrogation of postentry restriction of HIV-1-based lentiviral vector transduction in simian cells

Neeltje A. Kootstra; Carsten Münk; Nina Tonnu; Nathaniel R. Landau; Inder M. Verma

HIV-1 replication in simian cells is restricted at an early postentry step because of the presence of an inhibitory cellular factor. This block reduces the usefulness of HIV-1-based lentiviral vectors in primate animal models. Here, we demonstrate that substitution of the cyclophilin A (CyPA) binding region in the capsid of an HIV-1-based lentiviral vector (LV) with that of the macrophage tropic HIV-1 Ba-L resulted in a vector that was resistant to the inhibitory effect and efficiently transduced simian cells. Notably, the chimeric gag LV efficiently transduced primary simian hematopoietic progenitor cells, a critical cellular target in gene therapy. The alterations in the CyPA binding region did not affect CyPA incorporation; however, transduction by the gag chimeric LV seemed to be relatively insensitive to cyclosporin A, indicating that it does not require CyPA for early postentry steps. In dual infection experiments, the gag chimeric LV failed to remove the block to transduction of the WT LV, suggesting that the gag chimeric LV did not saturate the inhibitory simian cellular factor. These data suggest that the CyPA binding region of capsid contains a viral determinant involved in the postentry restriction of HIV-1-based lentiviral vectors. Overall, the findings demonstrate that the host range of HIV-1-based LV can be altered by modifications in the packaging construct.


Journal of Virology | 2009

Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins

Rebecca S. LaRue; Valgerdur Andrésdóttir; Yannick Blanchard; Silvestro G. Conticello; David Derse; Michael Emerman; Warner C. Greene; Stefán R. Jónsson; Nathaniel R. Landau; Martin Löchelt; Harmit S. Malik; Michael H. Malim; Carsten Münk; Stephen J. O'Brien; Vinay K. Pathak; Klaus Strebel; Simon Wain-Hobson; Xiao Fang Yu; Naoya Yuhki; Reuben S. Harris

Guidelines for Naming Nonprimate APOBEC3 Genes and Proteins Rebecca S. LaRue, Valgerdur Andresdottir, Yannick Blanchard, Silvestro G. Conticello, David Derse, Michael Emerman, Warner C. Greene, Stefan R. Jonsson, Nathaniel R. Landau, Martin Lochelt, Harmit S. Malik, Michael H. Malim, Carsten Munk, Stephen J. O’Brien, Vinay K. Pathak, Klaus Strebel, Simon Wain-Hobson, Xiao-Fang Yu, Naoya Yuhki, and Reuben S. Harris*


Nature | 2012

CCR5 is a receptor for Staphylococcus aureus leukotoxin ED

Francis Alonzo; Lina Kozhaya; Stephen A. Rawlings; Tamara Reyes-Robles; Ashley L. DuMont; David G. Myszka; Nathaniel R. Landau; Derya Unutmaz; Victor J. Torres

Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic towards neutrophils, but also specifically target other immune cells. Despite decades since the first description of staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins towards different immune cells remain unknown. Here we identify the human immunodeficiency virus (HIV) co-receptor CCR5 as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5+ leukocytes by LukED suggests a new immune evasion mechanism of S. aureus that can be therapeutically targeted.


AIDS Research and Human Retroviruses | 2003

The θ-Defensin, Retrocyclin, Inhibits HIV-1 Entry

Carsten Münk; Ge Wei; Otto O. Yang; Alan J. Waring; Wei Wang; Teresa Hong; Robert I. Lehrer; Nathaniel R. Landau; Alexander M. Cole

Retrocyclin is a circular antimicrobial 18-residue peptide encoded in the human genome by a θ-defensin pseudogene. In the human genome, the gene for retrocyclin is inactivated by an in-frame stop codon in its signal sequence but its mature coding sequence is intact. The peptide corresponding to the processed human retrocyclin, generated by solid phase peptide synthesis, inhibited replication of R5 and X4 strains of HIV-1 in human cells. Luciferase reporter virus and Vpr-BLaM entry assays were used to demonstrate that retrocyclin specifically blocked R5 and X4 HIV-1 replication at entry. Surface plasmon resonance demonstrated that retrocyclin bound to soluble CD4 and gp120, but gp120 cell-binding assays revealed that retrocyclin did not fully inhibit the binding of soluble CD4 to gp120. A fluorescent retrocyclin congener localized in cell-surface patches either alone or colocalized with CD4, CXCR4, and CCR5. In the aggregate, these results suggest that retrocyclin blocks an entry step in HIV-1 replication....


Nature Immunology | 2015

Intrinsic host restrictions to HIV-1 and mechanisms of viral escape

Viviana Simon; Nicolin Bloch; Nathaniel R. Landau

To replicate in their hosts, viruses have to navigate the complexities of the mammalian cell, co-opting mechanisms of cellular physiology while defeating restriction factors that are dedicated to halting their progression. Primate lentiviruses devote a relatively large portion of their coding capacity to counteracting restriction factors by encoding accessory proteins dedicated to neutralizing the antiviral function of these intracellular inhibitors. Research into the roles of the accessory proteins has revealed the existence of previously undetected intrinsic defenses, provided insight into the evolution of primate lentiviruses as they adapt to new species and uncovered new targets for the development of therapeutics. This Review discusses the biology of the restriction factors APOBEC3, SAMHD1 and tetherin and the viral accessory proteins that counteract them.


PLOS Pathogens | 2009

Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase.

Iñigo Narvaiza; Daniel C. Linfesty; Benjamin N. Greener; Yoshiyuki Hakata; David J. Pintel; Eric C. Logue; Nathaniel R. Landau; Matthew D. Weitzman

The APOBEC3 proteins form a multigene family of cytidine deaminases with inhibitory activity against viruses and retrotransposons. In contrast to APOBEC3G (A3G), APOBEC3A (A3A) has no effect on lentiviruses but dramatically inhibits replication of the parvovirus adeno-associated virus (AAV). To study the contribution of deaminase activity to the antiviral activity of A3A, we performed a comprehensive mutational analysis of A3A. By mutation of non-conserved residues, we found that regions outside of the catalytic active site contribute to both deaminase and antiviral activities. Using A3A point mutants and A3A/A3G chimeras, we show that deaminase activity is not required for inhibition of recombinant AAV production. We also found that deaminase-deficient A3A mutants block replication of both wild-type AAV and the autonomous parvovirus minute virus of mice (MVM). In addition, we identify specific residues of A3A that confer activity against AAV when substituted into A3G. In summary, our results demonstrate that deaminase activity is not necessary for the antiviral activity of A3A against parvoviruses.


Journal of Virology | 2012

The Vpx Lentiviral Accessory Protein Targets SAMHD1 for Degradation in the Nucleus

Henning Hofmann; Eric C. Logue; Nicolin Bloch; Waaqo Daddacha; Sylvie B. Polsky; Megan L. Schultz; Baek Kim; Nathaniel R. Landau

ABSTRACT Sterile alpha motif domain- and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase that restricts the replication of lentiviruses in myeloid cells by hydrolyzing the cellular deoxynucleotide triphosphates to a level below that which is required for reverse transcription. Human immunodeficiency virus type 2 (HIV-2) and some simian immunodeficiency viruses (SIVs) encode the accessory protein viral protein X (Vpx) that counteracts SAMHD1. Vpx recruits SAMHD1 to a cullin4A-RING E3 ubiquitin ligase (CRL4), which targets the enzyme for proteasomal degradation. Vpx and SAMHD1 both localize to the nucleus of the cell. We identified the nuclear localization sequence (NLS) of SAMHD1 as a conserved KRPR sequence at amino acid residues 11 to 14. SAMHD1 lacking a functional NLS localized to the cytoplasm but retained its triphosphohydrolase and antiviral activities. However, cytoplasmic SAMHD1 was resistant to Vpx-induced degradation, and its antiviral activity was not counteracted by Vpx. Cytoplasmic SAMHD1 interacted with Vpx and retained it in the cytoplasm. The inhibition of nuclear export with leptomycin B did not impair the ability of Vpx to degrade SAMHD1. These findings suggest that SAMHD1 is targeted by Vpx for ubiquitination and degradation in the nucleus.


Retrovirology | 2013

Restriction of diverse retroviruses by SAMHD1

Thomas Gramberg; Tanja Kahle; Nicolin Bloch; Sabine Wittmann; Erik Müllers; Waaqo Daddacha; Henning Hofmann; Baek Kim; Dirk Lindemann; Nathaniel R. Landau

BackgroundSAMHD1 is a triphosphohydrolase that restricts the replication of HIV-1 and SIV in myeloid cells. In macrophages and dendritic cells, SAMHD1 restricts virus replication by diminishing the deoxynucleotide triphosphate pool to a level below that which supports lentiviral reverse transcription. HIV-2 and related SIVs encode the accessory protein Vpx to induce the proteasomal degradation of SAMHD1 following virus entry. While SAMHD1 has been shown to restrict HIV-1 and SIV, the breadth of its restriction is not known and whether other viruses have a means to counteract the restriction has not been determined.ResultsWe show that SAMHD1 restricts a wide array of divergent retroviruses, including the alpha, beta and gamma classes. Murine leukemia virus was restricted by SAMHD1 in macrophages yet removal of SAMHD1 did not alleviate the block to infection because of an additional block to viral nuclear import. Prototype foamy virus (PFV) and Human T cell leukemia virus type I (HTLV-1) were the only retroviruses tested that were not restricted by SAMHD1. PFV reverse transcribes predominantly prior to entry and thus is unaffected by the dNTP level in the target cell. It is possible that HTLV-1 has a mechanism to render the virus resistant to SAMHD1-mediated restriction.ConclusionThe results suggest that SAMHD1 has broad anti-retroviral activity against which most viruses have not found an escape.

Collaboration


Dive into the Nathaniel R. Landau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waaqo Daddacha

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Bhardwaj

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge